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INTRODUCTION

Functional equations is a rather popular topic at the IMO and other mathematical
competitions, both national and international. At least 19 IMO-problems can be
classified as functional equations and all these problems are listed below. The
guestion posed in this type of problems is to find all functions satysfying the given
equation and, possibly, some additional conditions like continuity, monotonicity
or being bounded.



There however is no general method of solving this kind of problems and the
present text offers only some basic ideas that may turn out to be useful. Some type
of tricks are used when the functions consideredfareN — N, other for funk-
tionsf : Q — Q, and still different methods fof : R — R. Yet another approach
may be used when we know that the functions are looking for are polynomials.
(Throughout this textN, Z, Q andR denotes the sets of positive integers, integers,
rational numbers and real numbers respectively. An additional + signRlike
means "positive”N, denotes the set of all non-negative integgrsl, 2. 3, ...}.)

As an exemple of a functional equation, consider the famous Cauchy’s equation
flzx +y) = f(z)+ f(y), wheref : R — R andz,y € R. This very general
equation has in fact a very limmited family of solutions as soon as one add som
extra constrain. For example, if one demands that the solution has to be a con-
tinuous function then the only solutions are thgial ones: the linear functions
f(x) = cx, for any real constant

Even if one demands the continuty only in one sigle point R, or if one asks
for f bounded in some intervél, b) C R, or monotone, then the equation has still
only the trivial solutions. In order to find some non-trivial solutions one has to look
beyond Lebesgue measurable functions and that such pathological solutions exist
was proved by G. Hamel (in Math. Ann. 60, (1905), 459-462).

The list of all functional equation that occurred at the IMO is the following (many
more such problems has made to the IMO short-lists):

1968.5 Let f be a real-valued function defined for all real numbers, such that for
somea > 0 we have

flx+a) = % +/f(z) — f(x)?for all .

Prove thatf is periodic, and give an example of such a non-consfdat a = 1.

1972.5 f(z) andg(x) are real-valued functions defined on the real line. For all
andy, f(x+y)+ f(z —y) = 2f(x)g(y), fisnotidentically zero antlf(z)| <1
for all x. Prove thatg(x)| < 1 for all x.

1975.6 Find all polynomialsP(z, y) in two variables such that:
(1) P(tx,ty) = t" P(z,y) for some positive integer and all reak, =, y:



(2) forallrealz,y,z: P(y+ z,2) + P(z + z,y) + P(x +y,2) = 0;
(3) P(1,0) = 1.

1977.6 The functionf(z) is defined on the set of positive integers and its values
are positive integers. Given thatn+1) > f(f(n)) for all n, prove thatf(n) = n
for all n.

1981.6 The functionf(x,y) satisfies:

f0y) =y+1,fz+1,0)= f(z, ) andf(z+ 1,y +1) = f(z, f(z+ 1,y))
for all non-negative integers, y. Find f(4, 1981).

1982.1 The functionf(n) is defined on the positive integeRsand takes non-
negative integer values. Moreové(2) = 0, f(3) > 0, f(9999) = 3333 and for
allm,n e N: f(m+n)— f(m)— f(n) =0or1. Determinef(1982).

1983.1 Find all functionsf defined on the set of positive real numbRrs which
take positive real values and satisfy:
flzf(y)) = yf(x)forall z,y; andf(z) — 0 asz — oc.

1986.5 Find all functionsf defined on the non-negative real numbers and taking
non-negative real values such th@t2) = 0, f(z) # 0 for 0 < z < 2, and

flxf()f(y) = f(x+y)forallz,y.

1987.4 Prove that there is no functighfrom the set of non-negative intege\¥s
into itself such thaff (f(n)) = n + 1987 for all n € Ny.

1988.3 A function f is defined on the positive integeisby:
f() =1,7@3) =3,f(2n) = f(n), f(4n+1) = 2f(2n + 1) — f(n), and
fAn+3)=3f(2n+1) —2f(n)foralln € N,

Determine the number of positive integers< 1988 for which f(n) = n.

1990.4 Construct a function from the set of positive rational numbers into itself

such thatf (z f(y)) = % forall z, .



1992.2 Find all functionsf defined on the set of all real numbers with real values,
such thatf (2> + f(y)) =y + f(z)* forall z, y.

1993.5 Does there exist a functioh : N — N such thatf(1) = 2, f(f(n)) =
f(n)+nforalln € N,andf(n) < f(n+ 1) foralln € N?

1994.5 Let S be the set of all real numbers greater than Find all functions
f: S — Ssuchthatf(z + f(y) + 2f(y)) =y + f(z) + yf(z) forall x, y, and
f(z)

= is strictly increasing on each of the intervald < = < 0 and0 < =.
X

1996.3 Find all functionsf : Ny — Ny such thatf (m+f(n)) = f(f(m))+f(n)
for all m,n € Ny.

1998.6 Consider all functiong : N — N satisfying f(t>f(s)) = sf(t)* for all
s,t € N. Determine the least possible valuefdf 998).

1999.6 Determine all functiong : R — R such that
fla= 1) =ff(y)+zf(y) + f(z) - Lforallz,yinR.

2002.5 Find all real-valued functions on the set of real numtiemich that

(f(@) + F)((f(u) + f(v) = flou—yv) + f(zv +yu)

forall z,y,u,v € R.

2004.2 Find all polynomialsP(x) with real coefficients which satisfy the equality
Pla—b)+Plb—c)+ Plc—a)=2P(a+b+c)
for all real numbers, b, ¢ such thatub + bc + ca = 0.

Most of these problems are considerate in this text. Otherwise, the complete solu-
tions may be found on the Web, at http://www.kalva.demon.co.uk/imo.html. Ho-
wever | suggest that the reader try to solve the problems on his own, before con-
sulting the proposed solutions.



SOME EASY TRICKS

1. Transformation of variables.

This is a really basic trick and may be used as a part of a solution of a more
complex problem. Generally, given an equation of a type(z)) = h(z), with

g(x), h(x) given functions, then, if(x) has an inverse then, letting= g(z), we
getf(z) = h(g™'(2)).

Let's solve the following equation:

Example 1. Find all functionsf (x) defined for all real numbers, such tb%(tx i 1) =
T

11
1+=+=

5 forall = # 0.
i i

. . 1 1 .
Solution. By lettingt = i, we getr = T Hence, after some calculations,
X

the equation reduces {{t) = t* — ¢t + 1. Thusf(z) = 2° — = + 1. O

2. Creating simultaneous equations.

This is another simple trick, which often works when the equation involves two
valuesf(g(z)) andf(h(x)), for two different algebraic expressiogge) andh(z).
Consider the equation:

Example 2. Find all functionsf : R — R such thatz?f(z) + f(1 — ) = 2z — z*
forall x € R.

Solution. Replacingr by 1 — =, we have(l — 2)?f(1 — 2) + f(z) = 2(1 — ) —
(1—2)* Sincef(1 —z) = 2z — 2* — 2% f(x) by the given equation, substituting
this into the last equation and solving fofz), we getf(z) = 1 — 22

Now we should check that this function satisfiy the given equatidyi(z) +

fl—z)=2*1-2")+ (1 - (1—2)*) =2z —2". O



One more example:

: 1 1 :

Example 3. Solve the equatlorﬁ(—> + —f(—x) = z, wheref is a real valued
i i

function defined for all real numbers except O.

Solution. Replacingz by 1 yelds f(z) + xf( — 1) = 1 Replacing nowr by
i xz i

. 1 1 . .
—z leads to a new equatioff —z) — z f (—) = ——. From this equation and the
i T

original one can we now find the functigiix): Multiply the first equation withe

2

: 1 . :
and add to the last one. What we geRj§—z) = 2“ — —. Replacing once again
Hh

3
. 1 . . .
x by —z we get the final answerf(z) = T . It remains to verify that this

function satisfies the given eqation. O

Remark. In most cases we solve the equation under the (silent) assumption that
the functionf(z) exists As a consequence, it is necessary to check that the obtai-
ned function really satisfies the given equation.

3. Using symmetry.

If possible, one should use symmetry when dealing with the equation involving
more than one variable.

Example 4. Find all functionsf : R — R, such thatf(x + y) = z + f(y) for all
xz,y € R.

Solution. Left-hand side of the equation is symmetriciiandy. Thusz + f(y) =
flx+y)=fly+z)=y+ f(z), which can be written ag(x) — z = f(y) — v,
for all z,y € R. Hencef(z) — x is constant for alk: € R, and the answer is
f(z) = x + ¢, for any choice of the real constantprovided that those functions
satisfy the given equation. This however can be easily checked. O



Example 5. Find all functionsf : R — R, such thatf(x + y) — f(z — y) = 4y
forall z,y € R.

Solution. Letw = = + y andv = x — y. Then the equation can be written as
flu) — f(v) = u* — 0% or f(u) —u* = f(v) — v*. Since this relation holds

for arbitraryu, v € R then f(u) — u* is constant. Thusf(u) — u* = ¢ and the
answer is the family of functiong(z) = 2 +c, for any choice of a real constant
provided these functions satisfy the given equation. This however is easy (although
necessary) to check. O

4. Evaluating f(z,) for some special choices of.

Finding f(z() for some values af, like f(0), f(1), f(2), f(—1) and so on, may
give some ideas on the structurefdfr). This seems to be specially usefull when
the equation involves more than one variable.

Example 6. (Korea, 1988) Find' : R — R, such thatf (z)f(y) = f(zy)+ 2 +vy
forall z,y € R.

Solution. Lettingy = 0 we getf(z)f(0) = f(0) + z. Hence,f(0) # 0 and

f(x) = % + 1. Taking nowz = 0 we find thatf(0) = 1. Thusf(z) =z + 1
and it is easy to verify that this function satisfies the given eqation. O

In the next example, |[&é)* denote the set of positive rational numbers.

Example 7. Find all functionsf : Q© — Q™, such thatf (:p + g) = f(z) +
X

/)

m + 2y, forallz,y € Q.

Solution. By letting (z,y) be (1,1),(1,2) and (2,2) we find out thatf(2) =
F()+3, f(3) = f(1) + % + 4 and f(3) = f(2) + 5. From these three

equalities we can deduce thitl) = 1, f(2) = 4 and f(3) = 9. This leads to the

7



hypothesis thaf (n) = n? for at least € N.

This hypothesis may be now verified by taking= y = n and using the
obtained relationf(n + 1) = f(n) + 1 + 2n together with the mathematical
induction.

We may now suspect that the only solution of the equation is the function

f(z) = 22, forall z € Q*. Let’s take firstr = n, y = m and therw = @,

y = m (for n,m € N). We get , !
P 2 = 1+ S o 4 T o ane
m _m f(m) _m m?
f(%*”)—f(5>+f@§+2m—f(—>+f@q+%”

2 2
From the last two equalities |tfoIIowsthaf+ f( ) %,which

can be expressed as

m m2 m2 m m2 n2 m m2
=G St gy <6 e ym UE) e) -
m m n
(f(ﬁ)_ﬁ)o_f(%))' 2
Letg € QF, wherep,q € N. If 1 — % = 0 then, according to the equality
Py et P (P
above,f(q) 2 i 0, |.e.f](ng )_ 7 _4(2q) . 2 o
F1— -2 _ — 0 then, — 0 Ly Thus Y g,
() G 6 T G) f(3)

and then, lettingr = 2¢, m = 2p into the equality above, we find again that

1) =13 = 2~ L

q 2¢° (29> q
Hence the answer i(z) = 2?, and it is easy to verify that this function satis-
fies the equation. O

5. Polynomials.

When the functions we are looking for are polynomials there are several several
properties one should take into the consideration. The most importatnt are: the
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degree, the finite number of zeroes (unless the polynomial is the triviabone=
0) and the Factor Theorem (stating tht) = 0 if and only if x — « is a divisor

of p(z)).

Example 8. Find all real polynomialg(z) such thap(z+1)+2p(z—1) = 62°+5
forall z € R.

Solution. First we observe thai(x) has to be of degree 2, hence we may write
p(z) = ax?® + bx + c. Substituting this expresion into the equation we get+

12 +b(x+ 1)+ ¢+ 2a(z — 1)* + 2b(z — 1) + 2¢ = 622 + 5, which reduces to
3ax® + (—2a + 3b)x + (3a — b+ 3¢) = 62° + 5. Identifying the coefficients gives

1 4 1 L :
a=2 b= -, c= —. Hencep(z) = 22* + 3% + 9 and verification that this
polynomial satisfies the given relation is an easy task. O

Example 9. Find all real polynomial®(z) such thatep(x — 1) = (x — 2)p(x) for
all z € R.

Solution. Letting z = 0 we get0 = —2p(0), i.e. p(0) = 0. Similarily, for x = 2
we getp(1) = 0. Hencep(z) is divisible byz and by(xz — 1) and we can write
p(x) = x(x — 1)q(x), whereg(x) is a polynomial of degree 2 less than the degree
of p(x).

Replacingp(x) with z(x — 1)¢(z) in the original equation gives(z — 1)(x —
2)q(x — 1) = (z — 2)x(x — 1)g(x) for all z € R. Henceg(x — 1) = g(x) for all
x e R.

Let now z, be any fixed real number and consider the polynorhial) =
q(z) — q(xp). It is obvious thath(zy) = 0. Moreover, h(zg + 1) = q(zo +
1) — q(xg) = q(xo) — q(x9) = 0, and, usig the induction, one can show that
h(zg+n) =0foralln € Z.

Since a non-zero polynomial only has a finite number of zeroes /then= 0.
It implies thatg(x) is a constant polynomial, and thefx) = cx(x — 1), for any
choice of a real constant

It only remains to check that the polynomialgr) = cx(z — 1) satisfy the
original equation. O



MORE SOFISTICATED METHODS

8. Continous functions.

Some equations involving continous functiofs R — R may be solved in the
following way: Find first some special values, likg€0) or f(1). By induction
determine then the valugin) for all n € N, followed by the valueg'(n) for all

n € Z. In the next step find the valug”s{l) for n € Z and then findf(ﬂ) for
n n

all ™ ¢ Q. Finally, use thecontinuityof f(x) and the fact that the set of rational
n
numbers iglensen R, to determaine the formula fgi(x) for all x € R.

That the the set of rational numbégsis dense IR means that for each € R
there exists a sequen¢e, } of rational numbers such thatm x,, = =.

Suppose a functiorf(x) is defined on the subsét CnﬁﬂioThen we say that
f(zx) is continuous at a point, € I if, for each sequencér,} C I such that
lim z,, = xy, we havehm f(z,) = f(lim z,) = f(x0).

n—oo

We say thatf(x) is contlnous on if it is continous at each point, € 1.

As an illustration consider the already mentioned continous version of Cauchy’s
equation:

Example 10. Find all continous functiong’ : R — R such thatf(x + y) =
f(z)+ f(y) forall z,y € R.

Solution. Lettingx = y = 0 into the equation we gef(0) = 0. By induction
one shows easily that(nx) = nf(z), for alln € N and allz € R. Hence
f(n) =nf(1),foralln € N.

If we in the equation leyy = —z then we getf(0) = f(z) + f(—=z). Thus
f(—z) = —f(x) for all z € R. Forn € N we have thenf(—n) = —f(n) =
—nf(1), which means thaf(n) = nf(1) is valid for alln € Z. .

Suppose now that € N andn € Z. Thenn - f(%) = f(n- E) = f(m) =

mf(1). Thusf (=) = 2 £(1), i.e. f(z) = xf(1) is valid for all z € Q.
n n
Suppose finally that € R butz ¢ Q. Then, sinceQ is dense inR, con-

10



sider a sequencér,,} od rational numbers such thadim x,, = z. By the con-

tinuity of f(z) we havef(z) = f(lim z,) = lim f(z,) = lim (z,f(1)) =
F(1) lim () = £(1) - .

Hencef(z) = xf(1) for all z € R. Sincef(1) can be any real number then
the solution, if exists, must be of the forfiiz) = cx for any real constant. As
usual, it remains to verify that these functions satisfy the original equation.]

Example 11. Find all continous functiong(x) defined forz > 0 and such that
f(@)f(y)

T+y) =
o9 = 5@ s

Solution. Itis obvious thatf(x) # 0 forall x € R*. Takingx = y we getf(2x) =

forall z,y € RT.

f@)f@ 1. . o @i
f(l‘)-ﬁf(x) = 2f( ). Fory = 2x we have thenf(3z) = Fa)+ f2n)
f{;ff{ﬁl) = %f(x). This suggest thaf (nz) = %f(x) foralln € N, and

may easily be shown by induction.
By takingz = 1 in the last equality we gef(n) = lf(l) forall n € N.
n

Moreover,f(1) = f(n - %) = %f(%) which means thaf(%) = nf(1). Then,
m 1 1 .1 n
forallm,n € N, f(z) = f(m - H> = Ef(ﬁ) = Ef(l)

1 . —
We have that far shown th#fz) = — f(1) for all z € Q*. Using the continuity
T

argument this can be extended toalE R*. The answer is therfi(x) = < for
X
every non-zero real constant O

Example 12. (Croatia, 1996) Supposses a fixed number such that< ¢ < 1.
Find all functionsf : R — R, continous atr = 0, such thatf(x) — 2f(tz) +
f(t?*z) = 2% for all = € R.

Solution. Since the equation can be written(ggz)— f (tz)) — (f (tz)— f(*x)) =
2%, we may start by a substitutiof{z) = f(z) — f(tx). This will simplify the
equation tqy(z) — g(tz) = 2.

Now, sincef(z) is contious atr = 0, then is obvious that evey(z) is conti-

11



nous atr = 0 and thaty(0) = f(0) — ( ) =
In the equatiory(z) — g(tx) = z* we now S|bst|tute1: by tx several times,
getting successively:
g(x) — g(tx) = 2°,
g(tx) — g(t%) = 222,
g(tgx) — g(t3x) = t*2?,
g(tn—lx) . g(tn:[:) _ tQ("’_l)xz.
Adding all thos equalities we find thatz) — g(t"z) = (1 +# +t' + ... +
1 —¢2n 5 1

2(n—1)\ .2 ey 2 _ _ 2 _
t?"~)2*, and, since® # 1 theng(z) — g(t"z) = = 2 T T g
2 t2n

1—t2

Remembering thai < ¢ < 1 we can now lets — oo. Thent"xz — 0 as well
2n

1 —¢2

as

— 0 and, using the continuity gf(x) atz = 0, we getg(z) — g(0) =
2
2 R
1o 1=
We have that far found out thgt(z) — f(tx) = 1 i v for all z € R. What

we can do now is to repeat the same procedure we did above: substitugyomn:
several times. We get:

flz) = flte) =

(0) = 0 then finallyg(z) =

2

— 2’
222
flte) = () = =,
tha?
2 3
f(Px) = f(tr) = ——,
....... 2n1) 2
n—1 n —
g(t" ) - g(t"w) = —— 2
Adding those equations we find out thidtr) — f(t"z) = - ’ = (L+62+t"+
2 1 — t2n
Ly = T :
Letting nown — oo and using the continuity of (z) atz = 0, we getf(x) —
2
Wi
= ——— forall R.
£(0) - x €

12



2

T
(1 —1¢2)2
choice of a real constamt Now one must just check that those functions really
satisfy the given equation, which in fact turn out to be the case. .

Thus the only possible solutions are the functigns) = + c for any

9. Additional insights.

The methods described above are unfortunately not sufficient for solving more
difficult problems of the IMO type. Some additional knowledge about the func-
tions we are looking for is necessary and the question one should ask could be the
following:

a) Isthe function even? Is it odd? (In those cases it will be sufficient to consider
only xz > 0.)

b) Is the function periodic? (if "yes”, then it is sufficient to limit the domain of
the function to some finite interval.)

c) Is the function one-to-one (injective)? Is it onto (surjective)?

d) Does there exist any fixed point (i.e. sucthat f(z) = z)?

e) Is there any symmetry?

f) When dealing with functions defined dtfthen the uniquness of decompo-
siton into prime factors may turn out to be useful.

g) It's good to be aware of the alternative representation of non-negative inte-
gers in bases other than 10. The binary representation (in base 2) is quite useful
(see for example the problem 3 from the IMO 1988).

h) Again, it is sometimes useful to be aware that any non-empty subsét of
has the least element.

Applications of some of these ideas are illustrated in the following examples.
Example 13. Consider all functiong : R — R such thatf(z +4) + f(x — 4) =

f(z) for all z € R. Show that any such function is periodic and that there is a least
common positive period for all of them. Findp.

Solution. Puttingz + 4 instead ofr we getf(z + 8) + f(z) = f(z + 4). Adding
this equaition to the original one reducesfia +8) + f(z —4) = 0. Putting again

13



x + 4 instead ofr yelds f(x + 12) 4+ f(z) = 0. Since thenf(x + 24) + f(z +
12) = f((z 4+ 12) + 12) + f(z + 12) = 0 the the last two equations impliy that
f(x+24) = f(x) forall z € R,

Thus we have found a common peripd- 24 for all f(z) satisfying the origi-
nal equation. Now the question is if this period is the least positive one.

Consider the functiorf(z) = sin 7{—5 Since2r is the least positive period

of sinx thenp = 24 is the least positive period of(x). At the same time it
m(x+4) N
12

sin m(z —4) = sin (H + E) + sin (E — E) which, by easy trigonometr
12 12 3 12 3/ » DY easy ig Y

. T
reduces tein —.
Hencet the least common periodpis= 24. O]

is easy to show thaf(x) satisfies the condition of the problesin

Example 14. (Romania, 1999) Suppose that the functfonN — N is surjective,
while the functiong : N — N is injective. Given thaff(n) > g(n) for all n € N,
prove thatf = g.

Solution. LetA = {n € N: f(n) # g(n)} and supposel is a non-empty subset
of N. Then the seB = {g(n) : n € A} is also a non-empty subset bf and
thus has the least element. Suppg&e), for somea € A, is the least element of
b. Then, sincg(n) is injective, we have(a) < ¢g(b), for alla # b € A and, by
the definition ofA4, g(a) < f(a).

Sincef(n) is surjective then there exists= N such thatf(c) = g(a) < f(a).
Note thatc # a. Now, sinceg(n) is injective theng(c) # g(a) = f(c). Hence
c € Aand we havg/(c) < f(c) = g(a), which contradicts the choice af Thus,
the setA is empty, which means thg{n) = g(n) for all n € N, O

Example 15. (IMO, 1983) Find all functions : Rt — R* such that
flzf(y)) =yf(x)forallz,y € R, andf(z) — 0 asz — oo.

Solution. By takingz = y = 1 we getf(f(1)) = f(1). Takingx = 1 and
y= f(1)yeldsf(f(f(1))) = (f(l))Q. Combining these two equalities we receive

(F(1)* = F(F(F)) = F(f(1)) = F(1). Hencef(1)(f(1) — 1) = 0. Since
f(1) > 0, then we must havé(1) = 1, i.e.z = 1 is a fixed point off (z).
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Takingy = z yelds f(zf(z)) = xf(x), which means that f(z) are fixed
points of f for all z € R*.

Suppose thaf(z) has a fixed point, > 1. Then, by the above; f(z¢) = =}
is a fixed point as well. Then again; f (z3) = xé Is a fixed point off, and, by

induction,z2" are fixed points of for all £ € N. Sincez; > 1 then lim 22 = oo

k—o0
2k — 0, which contradicts the condition

stated in the problem. Thy&x) has no fixed points greater than 1.
Let’s now check iff (x) has some fixed points within the interv@l 1). If z is

and it follows thatlim f (22F) = lim

such a point then, taking = xy andz = — into the relation we get = f(1) =
Lo
1 1 1. . 1 1 1 : .
f(—m) = f(—f(z)) = zof(—),i.e. f(—) = —. Thus— > 11is a fixed
o o o Zo o L0
point of f(x), which contradicts the previous result. Hence: 1 is the only fixed
point of f(x).

We have however fund earlier thaf (x) are fixed points off for all z € R*.

: I
Thuszf(x) = 1 for all x € R*, which means thaf(x) = —. It is now easy to
X
check that this function satisy the given conditions. O

Example 16. (IMO, 1987). Prove that there is no functign Ny — N; such that
f(f(n)) =n+ 1987 for all n € Ny,

Solution. Suppose there is such a functigiz). Then f(z) must be injective
(one-to-one) becaus@a) = f(b) would implya = f(f(a)) — 1987 = f(f(b)) —
1987 = b. Moreover, it is clear that the functiof( f(n)) = n + 1987 will never
have the values from the sf, 1, 2, 3, ..., 1986}, and those 1987 numbers are the
only one fromNj that the functionf(f(n)) will miss (x).

Suppose now thaf(n) misses exactly: distinct values:, cs, ..., ¢; in Ny, i.e.
f(n) # c1,ca, ..., ¢ forall n € Ny. This implies thatf ( f(x)) misses the following
2k values: ¢y, co, ..., ck, f(c1), f(ca), ..., f(cr) In Ny. (Note that all the numbers
f(c;) are distinct, sinc¢ is injective.)

Now, if w & {c1,co, ..., ck, f(c1), f(ca), ..., f(ck)}, then there isn € Ny such
that f(m) = w. Sincew # f(c1), f(c2), ..., f(ck) @andm # ¢y, co, ..., ¢ SO there is
n € Ny such thatf(n) = m. Hencef(f(n)) = w.

This proves that the functiofi( f(n)) misses only th@k values{cy, cs, ..., ¢,
f(c1), f(ca), ..., f(ck)} @and no others. This contradicts the fact stated-palfove
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(1987 is an odd number). O

Example 17. (IMO, 1968). Letf(x) be a real-valued function defined for all real
numberse, such that for some positive constarthe equation
= — + \/f * holds for allz € R.

Prove thagf( )i |s periodic, and foa = 1, give an example of such a non-constant
function f(x).

Solution One way of solving this problem is to rewrite the equationfés +

\/f , and to realize that both sides of the equality are

1 L
symmetrlcal about§. Then it seems natural to make the substitujon) =
1
fla) =5

2 1 2
With this substitution we will havg(xz) > 0 and< (z+ a)) =7 (g(:v))

[\

for all z. It follows that that( T + 2a) ) - — ( x + a)) = i — (1 —

(9(33))2> = (g(a:))Q. Thus g(z + 2a) = g(z) for all z.

Hence,f(z + 2a) = g(z + 2a) + 1 g(x) + L f(x) so f(x) is periodic

2 2
with the perio®a.
There are several examples of non-constant functions satisfying the given equa-

tion and having period= 2. One such eaxample if(z) = %(1 + | cos %D
(check this!!). An another example one can get by takfiig) to be arbitrary in
the interval{0, 1) (for example, letf(z) = 1 for 0 < = < 1), then letf(z) = %

for 1 < x < 2. Finally use the equality’(z + 2) = f(z) to extendf(x) to all
other values of € R. O

Example 18. (IMO, 1996). Find all functiong : Ny — N; such that
f(m+ f(n)) = f(f(m)) + f(n) forallm,n € Ny.

Solution. Takingm = n = 0, we getf(f(0)) = f(f(0)) + £(0), which implies
that f(0) = 0. Takingm = 0. we getf(f(n)) = f(n), i.e f(n) is a fixed point
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of f(x) for all n € N. As a consequence, the equation becoifies + f(n)) =
f(m)+ f(n) (%).

Now we will show by induction that if. is a fixed point off (x) thenkn, is
also a fixed point off (z) for all k£ € N,. We know this already fok = 0 and
k = 1. If we assume thakn, is a fixed point of f(z) for somek € N, then
(k + 1)ng, and so ik + 1)n, also a fixed point of (x).

If 0 is the only fixed point off (z) then, by the relatiorx), f(m) = 0 for all
m & No.

Otherwisef () has a least fixed pointy # 0 (the least element in the set of all
non-zero fixed points of (z)). We want to show now thdin, are the only fixed
points of f(z) (for k € Ny).

So suppose that is a fixed point. Ther > ny and dividingz ny ny we get
x = kno+r, where0 < r < ng. Thusz = f(z) = f(r+kno) = f(r+f(kng)) =
f(r) + f(kno) = f(r) + kng. From this it follows thatf (r) = x — kng = r. This
means that is a fixed point off(z) and by the minimality of, it follows that
r = 0. Hencexr = kny and we are done.

We have however shown thgtn) are fixed points off (z) for all n € N.
Hence f(n) = c¢,no for some numbers, € Ny. Howeverc, = 0 since( =
f£(0) = cony.

Dividing now eachn € N, by ng we getn = kng + r, where0 < r < ny.
Thenf(n) = f(r +kno) = f(r + f(kno)) = f(r) + f(kno) = f(r) + kng =

cno+ kng = (¢, + k)ng = (cr + Lnﬁj) , Where| z| denotes the integer part of

Hence the answer i§(n) = (cr + Lﬁj), but this, of course, must be veryfied.
n

To this end, for eachy > 0 let ¢ ~ 0and letey, co, ..., cny—1 € Ny be arbitrary.
The functionf(n) = <cr + LED, wherer is the remainder of. divided byn,,
Ny

are all solutions: Writen = kny +r andn = Ilng + s, with 0 < r, s < ny.
Thenf(m + f(n)) = f(r + kng + (¢s + l)no) = ¢ng + kng + csng + lng =
f(f(m)) + f(n). Thatf(n) = 0 also is a solution is obvious. O

10. A good guess.

Sometimes a good guess may simplify the work considerably. There are equations
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which give a hint what the solution should look like. What then remains is to prove
that the guessed solutigi(x) is unique. One can for example make a substitution
f(z) = fo(z) + g(x), and show thereafter thgtz) = 0, or one can even use
another methods.

Example 19. Find all polynomialg(z) such thatp(z + 1) = p(x) + 2z + 1 for
all x € R.

Solution. Itis easy to guess thafz) = 2? is a solution to the equation. In order to
find if there are other solutions, lgt(z) = p(x) —2*. Then the equation translates
tof(z+1)=p+1)— (z+1)*=px) —2? = f(z) forall x € R.

By the same method as in Example 8 above we may then show that the only
polynomials f (z) satisfying the equatiorf(z + 1) = f(z) for all x € R are
constant polynomialsf(z) = ¢. Hence the answer to the given equation are all
polynomials of the formp(z) = 2% + ¢ for any choice of the real constant
However, it is again necessary to check that those polynomials satisfy the given
equation. O

Example 20. (Poland, 1992) Find all functiong : R — R such that following
conditions are satisfied:

(1) f(—z) = —f(z) forall z € R,
(2) f(x+1)= f(x)+ 1forallz € R and

() f(=) == f(z)forallz € R,z # 0.

2

8

SH R

Solution. It is immediate to see that(z) = x satisfies all the conditions of the
problem. But is it the only solution?

Let g(x) = f(x) — x. Using (1), (2) and (3) it is easy to find the following
properties ofy(x):

(4) g(—z) = —g(x),

(5) g(3i+ 1) N g(x) and
(6) 9(5) = ?9(37)

From (4) and (5) we find straightforward that(0) = g(—1) = 0. Suppose
now thatr # 0 andx # —1. We find that (the number above the sign of equality
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indicates which property is being used):

9@0) D go+1) L @12 g(—) P17 g () D e 1)
ooy +1) = bt 1P ay) B o 0 e -

iy e 2 (YO 2 L -
vg(l+—) = 2" -g(=) = —2* - — - g(x) = —g(@).

Hence2g(z) = 0,i.e.g(z) = O0forallz € R, andf(z) = x is the only solution
to the equation. O

—~

Example 21. Show that there are infinitely man functiois N — N such that
f(2) =2andf(mn) = f(m)f(n) forall m,n € N,

Solution. Eachn > 1 has a unique representation as a product of prime numbers,
n = py'py*...p,", wherep,; are prime numbers and € N. The condition of the
problem implies then that(n) = (f(p1))" (f(p2))...(f(px))™ (*). Hence the
function is defined by it's values on the set of prime numbers, which may be then
choosen arbitrarily.

To exhibit one specific infinite family of solutions 1t = {q1, ¢2, g3, ....} be
the set of all prime numbers greater that 2, in increasing order. ForreaetN,
let the function f,,, be defined orP in the following way: f,.(¢;) = ¢i+m- Then
we may addf,,(1) = 1 and f,,(2) = 2, and, using the property) extend the
definition of f,,, to the wholeN. O

11. Some useful facts.

We have already worked out one of the Cauchy’s equations but there are another
three. Since all they are already a folklore, the complet solutions are not given here,
only the final answer, and they may be used in the solutions of other problems as
given facts. However one should recommend that the reader try to solve those
equations on his own.

Note that we only mention the continous solutions. The general cases of Cauchy’s
equations (i.e. without any extra conditions) are much harder to solve.
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The only continuous solutions to the following Cauchy’s equations:

(1) flx+y) = f(z)f(y) forallz,y € R,
) f(zy) = f(x)+ f(y) forallz,y € RT,
(3) f(zy) = f(x)f(y) forallz,y € RT

are the following families of functions:
(1) f(x) = ¢" for any real constant > 0, or f(x) = 0,
(2) f(x) = clnz for any real constant,

(3) f(x) = x* for any real constant, or f(x) = 0.

Example 22. (Example 10 revisited). Find all continous functiofi&) defined

f@)f ()
f@)f(y)

for z > 0 and such thaf (z + y) = forall z,y € RT.

Solution. We note thatf(x) # 0 for all z € R* and putg(z) = % The
X

the equation may be written g@$x + y) = g(x) + g(y). This is the well known
Cauchy’s equation and the continous solutions@re = cx for any choice of
real constant. Hence the solutions of the original equation @fe) = — for all
CT
non-zero real constants l

Example 23. Find all continous functiong : R" — R" such that f(2¥) =
f(2)'W forallz,y € RT.

Solution. We note that the constant functigi(z) = 1 is a solution to the equa-
tion. Suppose then that there is another solutf@m), and thatf(a) # 1 for some
a € RT. Then, forallz,y € R*

f(a>f(xy) — f(axy) — f((ax)y> _ f(ax)f(y) _ f(a)f(x)f(y)’

from which follows thatf(zy) = f(x)f(y) for all z,y € R*. Since this is one
of the Cauchy’s equations (equation (3) above), we hfgug = ¢ for some real
constant: # 0.

Putting this function into the original equation it is easy to find that 1.
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Hence the equation has two solutiofi¢z) = 1 andf(z) = x. O

Example 24. Find all continuous functiong : R — R satisfying the equation

fle+y) = flx)+ fly) + f(x)f(y) forall z,y € R.

Solution. Since the right-hand side of the equation can be writtef{as+ f (y)+
f(@)fly) = (f(x)+1)(f(y)+1)—1then it seems natural to make the substitution

g(x) = f(x) + 1.

This leads to the (Cauchy’s) equatigt + y) = g(z)g(y) which only has
continous solutions of the form(z) = ¢* for any choice of a real constant> 0,
or the zero functio(z) = 0.

Thus the solutions to the original equation gfe) = ¢* — 1 for any choice of
a real constant > 0, or the constant functiofi(z) = —1. O

RELATED QUESTIONS

In slightly different, although closely related type of problems we are asked for
a specific valuef(a) of the function rather than finding the explicit formula for
f(x). The function in question is given in a similar form as in problems above.
The solving methods are more or less the same as those for solving functional
equations.

Example 25. (Hong Kong, 1996) Lef : R — R be afunction such thgi(1) # 0

andf(x +y*) = f(x) + 2(f(y))2 for all z,y € R . Find the value off (1996).

Solution. By takingz = y = 0 we find thatf(0) = 0. Takingz = 0 andy = 1
1

yeldsf(1) = f(0) +2(f(1)", sof(1) = 5.

Since £(2) = f(1+1%) = f(1) +2(f(1))* and f(3) = f(2+1%) =
F2) +2(£(1))* = f(1) + 4(f(1))°, we can guess that(n + 1) = f(1) +
2(n — 1)(f (1)) = % +2(n — 1)(;) g for all n € N. This can be easily
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verified by induction.
Hencef(1996) = 998. O

Example 26. (Greece, 1997) Lef : R™ — R be a function satisfying following
conditions:
(1) f(x) is strictly increasing,

(2) f(x) > —i and
3) F(2)f (f(z) + é):1 forall z € R*.
).

Find f(1
Solution. Let f(1) = a. Settingx = 1 in (3) we getaf(a + 1) = 1. Thusa # 0
andf(a+1) = l
a
Taking nowz = a + 1in (3) yelds lf(l + ! ) = 1, which implies
a” ‘a a+1

1 . . . . .
that f (= + n 1) = a = f(1). Sincef(z) is strictly increasing, we must have
a a
1 1 . : . 1+
-+ = 1. By solving this equation we get= \/5.
a a+1 2
1 5 1 :
Suppose that = +2\/_. Thenl < a = f(1) < fla+1) = - < 1. This
a
S 1—+/5
contracition implies thaf (1) = a = 2\/_.
(One may note that a function with described condition really exists, for ex-
1—+5
amplef(x) = 5 \/_.) H
T

COLLECTION OF PROBLEMS

The problems below are the first set of problems for training in solving functional
equations. To each problem there is given a hint, but it is not necessary to follow
it in order to find the solution. There, as almost always, are many different ways
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to approach a mathematical problem. The suggested complet solutions are given
in the next section.

1. Find all solutionsf(x) of the equationz f(x) + 2z f(—z) = —1 wherex € R
andz # 0.

(Hint: Create an additional equation.)

2. Find all functionsf(z) soving the equationf(z) + f(%) = x, where
— X
x # 0andz # 1.
(Hint: Create an additional equation.)

3. Solve the functional equatioR f(tanz) + f(— tanx) = sin 2x, where f(x)
are definded in the interval—g, g).

(Hint: Transformation of variable.)

4. (Poland, 1989) Determine all functiorfs: R — R, such that for allz, y € R,
(z =) f(z+y) — (z+y)f(x —y) = day(2® — ).
(Hint: Similar to Example 4.)

5. Find all polynomialg(z) satisfying the relatiorp(x + 1) = p(x) + 2z + 1.
(Hint: Discover symmetry.)

6. (Sweden, 1995) Find all polynomigl$x) which solve the following equation
forallz € R: ap(z — 1) = (z — 26)p(x).

(Hint: The same method as in Example 8.)

7. Determine all continous functionfs: R — R such thatf(1) = 2 andf(xy) =
f@)f(y) = fla+y)+1forallz,y € R.
(Hint: Find first the expression fof(z) for x € Q.)

8. (Canada, 2002) Find all functions: Ny — Ny such thate f(y) + yf(x) =
(z +y)f(2* + ) forall z,y € Ny.

(Hint: Try some values aof and guess the solution. Then prove the correctness
of your guess.)
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9. (Asian-Pacific MO, 2002) Find all functions: R — R such thatf(z) = 0 has
only a finite number of roots anf{z* +y) = 2° f(x) + f(f(y)) forall 2,y € R.

(Hint: Show first thatf (z*) = 2° f(2) for all 2,y € R. Prove then thaf (z) is
an odd function. What are the zerosfdfr)?)

10. (UK, 1977) Letf : N — N, satisfy

(@) f(mn)= f(m)+ f(n), forallm,n € N,
(b) f(n) = 0 whenever the units digit of (in base 10) isa’'3’, and
(c) f(10)=0.

Prove thatf(n) = 0 for all n € N.

(Hint: Factorization.)

11. Find all functionsf (z, y) from the sef)™ x Q™ of all pairs of positive rational
numbergz, y) to the setQ ™, which satisfy the following conditions:

(1) f(z,1) ==z forallz € QT,
(2) f(x,z) =1 forallz € Q" and
(3) f(x,y) - f(z,t) = f(xz,yt) forall x,y, z,t € Q.

(Hint: No need for that. It's a very easy problem.)

12. Determine all continous functions : R* — R such thatf*(z) = f(z +
y)f(x —y) forall z,y € R.

(Hint: To get rid of the square, take logarithms on both sides.)

13. Find all functionsf : N — N which satisfy the equatiorf (f(f(n))) +
f(f(n)) + f(n) =3n,foralln € N.
(Hint: Show first thatf (n) must be injective. What ig(1)?)

14. Find all real polynomialg(z) satisfyingp(2?) + p(x)p(z + 1) = 0 for all
x € R.

(Hint: Show that ifz is a zero of the polynomial(z) then even:? is a zero of
this polynomial.)

15. (Sweden, 1962) Determine all functiois R — R such that for all: € R
and allr € Q the inequalityl () — f(r)| < 7(z — r)?* is satisfied.
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(Hint: Find first the values od(x) for rationalz. The triangle-inequality may
be useful.)

16. (Israel, 1995) Let: be a real number. Determine all functiofis R™ — R*

1
such thatuz’f (=) + f(z) = ' forallz € R
i

z+1

: 1. : : :
(Hint: Put — instead ofz and symplify the equation. Consider several cases
T
depending on.)
r—3

T+ 1

17. (Korea, 1999) Determine all functions: R — R such thatf (

f(?ti) =z forallz € R,z # —1 andx # 1.

)+

(Hint: Take firsty = L
i
which are not difficult to solve.)

and theny = iﬂ_—x This will give two equations

18. Find all functionsf : N — N such thatf (f(m) + f(n)) = m 4+ n for all
m,n € N.

(Hint: Show thatf (n is injective (one-to-one). Find(1).)

19. (Poland, 1992) Determine all functiorfs: Q* — Q¥ such thatf(z + 1) =
f(z)+1 and f(2*) = (f(sc))3 forallz € Q.

(Hint: Consider the rational number= n + n?form,n € N.)
n

20. (Belarus, 1995) Find all functiong : R — R such thatf(f(z + y)) =
flx+y)+ f(x)f(y) —xyforall z,y € R.
(Hint: This is a tricky one. One way of doing it is to try to get rid of the double

f on the left hand side. You may first pyut= 0 and then replace by = + y. Try
the same trick with the new equation, but witk= —1 this time.)

21. (IMO, 1982) The functiory(n) is defined on the positive integeisand takes
non-negative integer values. Moreov&eR) = 0, f(3) > 0, f(9999) = 3333 and
forallm,n € N: f(m+n)— f(m) — f(n) =0 or 1. Determinef(1982).

(Hint: Since the conditiotf (m+n)— f(m)— f(n) = 0 or 1 is not easy to handle
we may try to replace it with a (weaker) conditigtvn+n) > f(m)+ f(n). Find
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f(3) and thenf(3n).)

22. Let f : N — N be a strictly increasing function satisfying2) = 2 and
f(mn) = f(m)f(n) for all m,n € N such thatm,n) = 1. (The notion(m,n)
means the greatest common divisomefandn. Thus,(m,n) = 1 means thatn
andn are coprime.)

Prove thatf(n) = n foralln € N.

(Hint: Show that ifm is an odd integer and(m) = m, then f(2m) = 2m.
What isf(3)? Then, the indirect proof may be an effective method.)

23. (Chech Republic and Slovakia, 1993) Determine all functibnsz — 7

such thatf(—1) = f(1) and f(z) + f(y) = f(z + 2zy) + f(y — 2zy) for all
x,y € 2.

(Hint: Find f(3) and f(5) in terms of f(1). What pattern do you see? Show
then thatf (n) is even. What can you find about the valtienn) for oddm?)

24. (IMO, 1977) The functionf(z) is defined on the set of positive integers and
its values are positive integers. Given tiiét + 1) > f(f(n)) for all n, prove that
f(n) =nforalln € N.

(Hint: Since we are given an inequality, it may turn out to be smart to stick to
the inequalities and work on showing thét:) > n and f(n) < n. Consider as
well proving the following statement: th > n thenf(m) > n. This may be done
by induction.)

25. Solve the same problem as in Example 19, but without the assumption that
f(x) must be continous.

(Hint: After beginning as in Example 19, show thétr + v) = f(z) + f(v)
for non-constant solutioyfi(x). Prove then thaf () = « for all z € Q" and find
then a way to extend the result to ale R*.)

26. (IMO, 2002) Find all functions : R — R such that

(f(@)+ f() ((f(w) + f(v) = flzu—yv) + f(zv+yu) forall z,y,u,v € R.
(Hint: Find f(x) for rationalx and then try to extend the resultics R. Since

in the problem nothing is said about the continuityf¢f), so you cannot use the

standard argument. Instead you may find it useful to prove fthatis even and
monotone forr > 0.)
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SOLUTIONS TO THE PROBLEMS OF THE COLLECTION

1. First we note that = 0 must be excluded from the domain 6fX). Substitu-
ting x by —z yelds —z f(—x) — 2z f(z) = —1. Adding this equation twice to the
- . . 1 . .
original equation gives—3z f(x) = —3. Hence f(x) = —. It remains to verify

T
that this function satisfy the given equation.

C1l—z
Replacingr again by% givesf(x—_l) + f(x) = x—_l. Subtracting from
— X i i

2. Replacingz by ﬁ yelds the equqtionf (ﬁ) + f(x — 1) !

this equation the previous one and adding the original equation yiefds) =
—2d 4+ —1 i —r+1
satisfy the original equation.

and it is easy to verify that this function

2 . :
3. Lety = tanz. Thensin2z = — i | and the equation can be written as
Y
2y
2 —y) = .
fy)+ f(=y) o :
Replacing nowy with —y gives a new equatior2f(—y) + f(y) = —— i T
Y

If we now from this equation twice substract the first equation we-gef (y) =

6 . 2 2 .
—— Y e fly) = — Y . Thus, f(z) = — ‘ , and what remains is to check
ye 41 . Y-+ 1 - z=+ 1
that this function satisfies the original equation.
4. Letu = x + y andv = = — y. Then the equation can be written@s(u) —
uf(v) = wv(u? —v?). Foru # 0 andv # 0 this can be written a& —u? =
u

f(v) o2,

()

f(u) 2

Since this relation holds for arbitrary non-zetov € R then——= — u” is

f(u) ¢

constant. Thus—~ — u? = ¢, i.e. f(z) = 2° + cx.
u

Observe that from the relatiary (u) —u.f(v) = uv(u® —v?) follows (by taking
u = 0,v # 0) that f(0) = 0. Since for each functioffi(z) = z* + cx we have also
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£(0) = 0 then, if the original equation has a solution, it mustfge) = z° + cx
for any real constant Thus it only remains to check that this functions satisfy the
given equation.

5. The equation can be written agz + 1) — (z + 1)* = p(x) — 22, or, by letting
q(z) = p(x) — 2?, as q(z + 1) = ¢(z). By induction one can show now that
q(z +n) = q(x) foralln € Z.

If we let h(x) = q(x) — q(0), then it follows thath(n) = 0 for all n € Z.
Sinceh(x) is a polynomial themi(z) = 0 andq(z) is a constant polynomial. This
implies thatp(x) = 2 + ¢, for any choice of a real constant

Substitutingp(z) in the original equation verifies that this family of polynomi-
als satisfy the equation.

6. First one should find out that 0) = 0 (by takingz = 0) and then thap(k —
25

1) = 0impliesp(k) = 0for k = 1,2, ...,25. Hencep(z) = H(x — k) - q(x), for

k=0
some polynomia(z). Letting this expression fg#(z) into the original equaition
25 25
yeldsz [[(x — 1 — k) - q(z — 1) = (x — 26) [ [(x — &) - q(2).
k=0 k=0

It follows that forx > 26 we haveq(z — 1) = ¢(z), and then, by the same
25

argument as in Example §(x) = constant. Finally p(z) = cH(a: — k), for any

k=0
choice of the real constant It is easy to check that these polynomials satisfy the
original equation.

7. In order to simplify the calculation let’s introduce a new functigfx) =
f(z) — 1. (This is a smart substitution allowing us to get rid of the constanin
the relation given in the problem). Replacing th&n) by ¢g(z) + 1 in the relation
gives &) : g(zy) + g(z +y) = g(x)g(y) + g(z) + g(y) andg(1) = 1.

Insertingy = 1in (x) yeldsg(z) + g(x + 1) = g(x)g(1) + g(x) + g(1), i.e.
g(x+1) = g(z) + 1. Thus, forz = 0 we havey(1) = ¢(0) + 1, which means that
g(0) = 0. Moreover, takinge = —1 we getg(0) = g(—1+1) = g(—1) + 1, i.e.
g(=1) = -1

By the induction we can now generalize the relatidm + 1) = g(z) + 1 to
g(x +n) = g(x) + nforall n € Z. Then it follows thatg(n) = g(0 +n) =
g(0) +n=nforalln € Z.
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g(n+ ) = gmg(-

1 1
then we have +n+ g(=) = ng(—
n n
: 1. : :
Let nowm € Z andn € N. Takingx = m andy = — in the relation(x) gives
n

If we putx = n andy = % (for 0 # n € Z) in the relation(x) theng(%) +
1 : 1 1

ﬁ) +g(n)+g(ﬁ). Slnceg(?) =n andg(n—kﬁ) = n;rg(ﬁl),

) +n+g(=), which implies thag (—) = —.

n n n

1 1 1 m
n

g(%) —|—g(m—|— ﬁ) = g(m)g(ﬁ) +g(m) —l—g(ﬁ). This reduces t@( ) +g(m)+

1 1 1 m m
—) = — —), and further tgy(—) = —.

9(=) = g(m)g (=) +g(m) + g(-), and further toy () = —
Thus we have showed thatr) = x for all x € Q. Using the same continuity

argument as in Example 9 we find thiét) = x for all x € R. Hencef(z) = z+1

and one should now verify that this function satisfy the relation in question.

8. Takingy = 0 yeldszf(0) = xf(2?) for all z € Ny, i.e. f(z*) = f(0). This
may suggest that(z) is a constant function. Moreover, it is clear that all constant
functions satisfy the given equation.

Supposer,b € N and f(a) < f(b). Then(a + b)f(a) = af(a) + bf(a) <
af(b) +bf(a) < af(b)+0bf(b) < (a+b)f(b). Since the middle term in the last
expression equala+b) f (a*+b?), then we havea+b) f(a) < (a+b) f(a*+b?) <
(a+0b)f(b), i.e. f(a) < f(a® +b%) < f(b) forall a,b € N.

We can then repeat the same argument with the samedb, = o> + V°
getting f(a) < f(a® +b3) < f(b)) = f(a® +b*) < f(b). Doing the same with
b, = a® + b? we get an infinite number of different valugsb, ), f(b2), f(b3), ...,
all of them betweeryf(a) and f(b). Since this is imposible then, for all b € N,
f(a) = f(b). Especiallyf(a) = f(1) for all a € N.

Sincef(1) = f(1*) = f(0) then we finally havef (x) = f(0) for all z € Ny,

9. Takingz = 1 andy = 0 yelds f(f(0)) = 0. Taking instead: = 0 yelds
fy) = f(f(y)) forally € R. Hencef(0) = 0.

1By taking nowy = Owelgetf(x4) = a:3f(a71). Forz # OW? have therf(—z) =
S ) = 5 (0)) = —afl') = — o' f(@) = ~f(a)
Hencef(x) is an odd function.

Suppose thaf(1) = 0. Then we would havg (2) = f(1 +1) = f(1*+1) =
1°f(1) + f(f(1)) = 0, and, by inductionf(n + 1) = f(1* +n) = 1°f(1) +
f(f(n)) = 0foralln € N. This however cannot be the case siri¢e) only have
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a finite numbers of zeros. Hengél) = ¢ for some non-zero real constant

Puttning nowy = cin the expressiorf(y) = f(f(y)) yeldsf(c) = f(f(c)) =
f(1)=c.

Suppose now that, is a zero off (x), g # 0. Thenx, # 1 as well and, using
the expressiorf (z*) = 2° f(x), we getf(zg) = xif(z¢) = 0. That would give
us an infinite number of zeros gf(x), namelyz;" for all n € N. which is not
possible. Thug (z,) # 0 for all xy # 0.

For any givenr € R, letz = f(z*) — z*. Then we getf(2?) = f(2* + 2) =
2’ f(z) + f(f(2)). At the same timef(z*) = 2°f(x) according to one of the
expressions above. Heng¢ f(z)) = 0, which implies thatf(z) = 0 and then
z = 0.

From the last argument follows thgtz) = = for all non-negative real num-
bers. But sincef(x) is an odd function then, for > 0, we havef(—x) =
—f(z) = —x. Thus f(z) = = for all z € R. It is now easy to check that this
function really satisfies the conditions of the problem.

k k
10. By easy induction one can show thﬁaé 11 ai) =) f(a;). Now, we have
=1 =1

0 = f(10) = f(2-5) = f(2) + f(5), and sincef(2), f(5) > 0 then, f(2) =
f(5) =0.

In n € N then we can factorize all 2’s and 5's and write= 2° - 5" - m,
where the last (units) digit of. is 1, 3, 7 or 9. Hencef(n) = f(2°-5'-m) =
sf(2) +tf(5) + f(m) = f(m).

What remains is to find out what j&m) when the last digit ofn is 1, 7 or 9.
Suppose the last digit of: is 1, i.e.m = 10k 4+ 1. Now we can use the second
condition of the problem. We have= f(3m) = f(3) + f(m) = f(m).

Similarily, if m = 10k + 7then0 = f(9m) = f(3) + f(3) + f(m) = f(m),
and ifm = 10k +9then0 = f(3m) = f(3) + f(m) = f(m) (since the last digit
of 3m is 7).

Thusf(n) = 0foralln € N,

11. This is an easy problem and the solution may be like the following argument:

FLy) -y 2 ry - fw ) 2 fy) D1 Thus (L y) = 5

Now, &~ =z f(1,y) L f(z,1)- £(1,9) € f(x,1). Hence, f(z,y) = -

It is obvious that this function satisfies given conditions.
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12. Sincef(x) > 0, it's safe to take logarithms on both sides. This yeltis (f(z)) =
In (f(z+y)) +In (f(z—y)). The next step is obvious: introduce a new function:
g(z) =In (f(x)). The equation transforms fy(z) = g(z + y) + g(z — y).

In order to solve the new equation, take- x. This giveg(z) = g(2z)+g(0),
l.e. g(2z) = 2¢g(x) — g(0). Now, since2g(2z) = g(2x + z) + g(2x — z), then
9(3z) = 2g(2x) — g(x) = 2(29(x) — g(0)) — g(x) = 3g(x) — 29(0).

At this stage we may guess thgtz) = ng(x) — (n — 1)g(0) for all n € N,
and we may prove this by induction.

Take now a positive rational number = T, with n € N. This means that

m = nz and thusg(m) = g(nz) = ng(z) —n(n — 1)g(0). On the other hand
g(m) = g(m - 1) =mg(1) — (m — 1)g(0).

From the last two equalities we deduce thatz) — (n — 1)g(0) = mg(1) —
(m —1)g(0), i.e.ng(x) = (n — m)g(0) + mg(1). Dividing both sides by: and
keeping in mind that = % we getg(z) = (1 — x)g(0) + xzg(1), which may be
written asg(z) = (g9(1) — g(0))z + g(0). Letting g(1) — g(0) = a andg(0) = b
we get finallyg(z) = ax + b.

The continuity ofg(z) (logarithm andf(x) are continous) allow us to extend
the result in the usual way to all € R*. Thus, f(z) = /@ = ¢+ for any
choice of real constantsandb.

What remains to do is to check that so obtained function satisfies the given
equation.

13. It is obvious that the identity functiofi(n) = n satisfies the given equation.
We may suspect that there are no other functions than that.
First we observe that(n) is injective. For suppos¢(n) = f(m). Then ob-

viously f(f(n)) = f(f(m)) and consequentl)f(f(f(n))) = f(f(f(m))).
Thus, £(£(f(m)) + £ (F()) + F(n) = F(F(F(m) ) + F(F(m) + f(m), e

3n = 3m andn = m.

Forn = 1 we getf(f(f(l))) + f(f(1)) + f(1) = 3, which can only mean
that f(1) = 1. Hencef(2) > 2, f(3) > 3, and so on.

Suppose now that is the least number such th@tk) > k. Then, since
f(f(k)) > f(k), we would havef (f(k)) > f(k) > k. Similarily we would
havef(f(f(k))) > f(f(k)) > k. This together would give uﬁ(f(f(k))) -
f(f(k)) + f(k) > 3k which contradicts the equation.
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Hencef(k) = kforall k ¢ N

14. If the polynomialp(z) is constantp(x) = ¢, then, inserting it into the equation
givesc = 0 or ¢ = —1. Both of this polynomials are apparently solutions to the
equation. So let us now assume thpat) is not constant.

Supposez, is a zero ofp(z). Putting =, into the equation yieldg(z2) +
p(zo)p(xg + 1) = 0, i.e. p(z2) = 0. Thusa? is a zero ofp(z) as well. This ar-
gument can be repeated and, by induction, one showscthatre zeros op(z)
for all n € N. Since the polynomigl(x) has only a finite number of zeros thep
can only equal$, 1 or —1.

Letting nowz, — 1 into the equation yields((zy — 1)?) + p(xo — 1)p(zo) = 0,
i.e.p((zo—1)?) = 0. This means thatr, — 1)* is again a zero gf(z). In the view
of the above discussiofx, — 1)? equalsy, 1 or —1. Hence,r, can only equal§
or 1 and therp(z) = ca"(xz — 1)™ for somec € R andm,n € N. If ¢ = 0, we get
the zero polynomiab(z) = 0 already considered. Suppose then thgt0

Inserting this expression into the equation gives' (z* — 1)™ 4 ca"(x — 1)™ -

c(x + 1)"z™ = 0, which reduces ta" "™ (z + 1) " + ¢ = 0 for all . Then
apparentlym = n andc = —1. Hencep(z) = —z"(x — 1)" for all n € N.

One must now only check that these functions really satisfy the given equation.

Thus the answer ig(z) =0 orp(x) = —1 orp(z) = —z"(x — 1)" foralln € N.

15. Supposer, s € Q such that- < s, and letn be a positive integer. Let divide
the segmenir, s] in n equal parts by; = r + . i,fori =0,1,2,...,n. Each
S—7T

part has the lengthr; — r; ;1| =

Then|f(r) — f(s)| = )Z (f(rl-) — f(rm))’. Using now the triangle in-

74z—i-1 —

MH

equality we get(r) — f(s)] < D |£(r) = f(rin)]| <

n—1
s—r\2  T(r—s)?
7; < n ) - n
Letting nown — oo we find out that the right hand side goesOt@nd so
f(r)— f(s) = 0,i.e. f(r) = f(s) forall r,s € Q. Hencef(x) is a constant

function onQ, f(z) = ¢ for some real constartand allz € Q.
Now we can turn to the real numbers If then z € R wa may consider a
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sequence of rational numbefs,} C Q, such thatlim r, = =. We may in fact

n—oo

choose{r, } so thatjxz —r,| < 107" forall n € N. Thus
7
[f(@) =l = |f(@) = J(ra)| < T(@ = 72)" < 753
Since the right-hand side can be made as small as needed, we conclude that
f(z) —c=0.Hencef(z) = cforall z € R. Itis also easy to see that the constant
function really satisfy the given equation.

.1, 1 1 1 . 1
16. Taking — instead ofr yelds aﬁf(l’)-i-f(z) =7 Ehmmatmg nOWf)(E)
X — ax

from this equation and the original one reducegio- o) f(z) = 1
i

Consider now several cases depending on the constant
1 —
(1) Ifa = —1 ora = 1, then we have = gj(—ﬁ
T
clearly impossible, hence there is no solution in this case.

forall z > 0. This is

1 z(1 — ax) : I :
(12) If « > 1, thenf(z) = I R Taking thenr = 5- we will get
f(2—) < 0, which contradicts the condition of{z) (f(x) is positive valued).
a
: 1 (1 — ax)
(3) If a < —1, then againf(z) = T R—— and f(z) < 0 for all

x > 0. Hence a contradiction.
(4) If 0 < a < 1, then, sincef(z) =
forall z > % Again a contradiction.
(5) If —1 < a < 0, thenf(z) =

positive real numbers.
It remains to verify that this function (only for1 < a < 0) satisfy the given
equation.

1 (1 — ax)
l—a?> z+1

, we havef(z) < 0

1 z(1 — ax)
l—a> x+4+1

and this is> 0 for all

17. Takingy = i—;i’ yeldsz = ?_ﬂ and the equationf(y) + f(y — i’)

3 . 3 -3
ﬂ. If we instead takey = e thenz = 2—2 and we get another equation:
1—vy 1—x y—+1

3—|—y) y—3

—= ) + =

Adding now both equations together we get(y )+f( ) +f (3 i z)
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3+y+y—3_ 8y
l—y y+1 1—y
. y—3 3+y
equation that (—) + (—
. / y+1 f 11—y
Ay oy 4Ty

MW= Ty

It remains to verify that this function really satisfy the given equation.

18. Supposef(m) = f(n). Then we havef(m) + f(n) = f(n) + f(n). Taking
f on both sides of last equality gives, according to the relation the fungtion
satisfiesyn +n = f(f(m) + f(n)) = f(f(n) + f(n)) = n+n. Hencem = n
and we can conclude th#tn) is injective.

In order to find the valug'(1) supposef(1) = ¢ > 1. Then2 = f(f(1) +
f(1)) = f(2¢). Thusf(2+¢) = f(f(2¢)+ f(1)) = 2c¢+ 1. Itis then obvious that
c cannot equals 2: putting= 2 into the last two equalities would giv&4) = 2
andf(4) = 5. Hencec > 2,

Consider now the numbefg2c) + f(1) andf(c+2)+ f(c—1). Applying f to
those two numbers yield§( f(2¢) + f(1)) = 2c+1andf(f(c+2)+ f(c—1)) =
c+2+c—1 = 2¢+1. Sincef (n) is injective thenf (2¢)+ f (1) = f(c+2)+f(c—1),
which means that +c¢ =1+ 2c+ f(c—1),i.e. f(c—1) =1 — ¢ < 0. Since this
Is impossible then the laternative> 2 must be rejected and we hawve- 1.

Now we claim thatf(n) = n for all n € N. We know it is true for = 1. So
suppose it is true for some, € N. Thenng + 1 = f(f(ng) + f(1)) = f(no+1).
Hence, by the inductiory;(n) = n for alln € N.

5- On the other hand we know from the original functional

8
) = y. Hence2f(y) +y = 1 Y

19. By easy induction one may extend the conditiffx + 1) = f(x) + 1 to
f(x+n)=f(z)+nforalneN,

Consider now the positive rational number= m + n?, for anym,n € N.
From the second condition of the problem and %sing the new condition above

e get 1((G1+ ") = (1G] = (160 0] = (16 +
3(7(2)) w437 (Cynt .

On the other hand((% ) ( n?+3(— )n4+n6) —
f((%)3+3m2+3mn3+n6) = ((%)3> + 3m? +3mn +nb = <f<%))3+

w
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3m? + 3mn® + n°. ; )
Equating both right-hand sides givéﬁ(%)) + 3(f(%)> n*+ 3f(%)n4 +

nd = (f(%))g +3m? + 3mn® +n’, i.e. (f(%)fnz + f(%)n4 = m? + mn?.

Now, it is only to discover thet the last expression can be factoriseéd -as
m

2 9 my 4 2 3 m m 3
Since the last parenthesis is neOethenf(E)n — m = 0, which means that
m m
FG) =+
It is not difficult that the functiorf(z) = x satisfies the original equation.

20. It is obvious thet the functiorf(x) is not constant. The doublg of the left

hand side complicates the problem considerably. To get rid of that we may first
takey = 0 (getting f(f(z)) = f(z) + f(z)f(0)) and then replace by = +

y, which results in a new equatiof(f(z + y)) = f(z + y) + f(z + y)f(0).
Equating the right-hand sides of this equation and the original one wg(get

y)+ (@) f(y) —zy = f(x+y)+ f@+y) f(0), or f(0) f(z+y) = f(x)f(y) —zy

(%).

Let's now try to puty = 1 into (x). This will result in f(0)f(x + 1) =
f(x)f(1) — x (x*). From the last expression we would like to eliminate the
f(z 4+ 1) term. In order to do that put = —1 in (x) (getting f(0)f(z — 1) =
f(z)f(—=1) + z) and replace them by = + 1. This givesf(0)f(z) = f(z +
1)f(—1) +z + 1, which multiplied byf(0) is f2(0)f(z) = f(0)f(x+1)f(—1)+
f(0)(x + 1). Now we can substitute her&0)f(z + 1) by the expression in
() fA0)f(2) = (f(a)f(1) = 2)f(=1) + f(0)(z + 1). Hence (f2(0) -
FOFED) F@) = (£0) = F(=1))w + F(0) G2,

There are now two cases to consider: the coefficient on the left hand side equals
0 or not.

Supposef?(0) — f(1)f(=1) = 0. Then puttingz = 0 in (x » ) results in
f(0) =0.Hence,f(1)f(—1) = 0. At the same time the equalif}(0) = 0 turn (x)
into f(x)f(y) = zy. Takingz = 1 andy = —1 we getf(1)f(—1) = —1, which
contradicts the previous result.

Suppose finally thaf?(0) — f(1)f(—1) # 0. Then the expression ¢ x) im-
plies thatf(x) is a polynomial of degree ong(x) = ax + b. Substituting this
polynomial into the original equation we geta(z + y) + b) + b = a(z + y) +
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b+ (ax + b)(ay + b) — xy. Since this is valid for alk, y € R the by taking some
values forz andy it is easy now to show that = 1 andb = 0. Thus, the only
solution to the equation i§(z) = x.

21. Since the conditiorf(m +n) — f(m) — f(n) = 0 or 1 is not easy to handle
we may try to replace it with a (weaker) conditigm + n) > f(m) + f(n). So
let’s see how far do we get.

We begin with findingf(1): 0 = f(2) = f(1+1) > f(1) + f(1) = 2f(1).
Sincef(1) > 0 the we havef(1) = 0.

Now, f(3) = f(2+ 1) = f(2) + f(1) + @ = a, wherea equals 0 or 1. Since
we know thatf(3) > 0 then, of coursef(3) = 1

Next we may note thaf(2-3) = f(3+3) > f(3)+ f(3) =2, f(3-3) =
f(2-343) > f(2-3)+ f(3) > 3, and generally, by induction, th#{3 - n) > n.

Moreover, if we for somé get f(3k) > k, then the same argument shows that
f(3m) > m for all m > k. But we know thatf(9999) = f(3 - 3333) = 3333,
hencef(3n) = n for all n upp to at least 3333.

Now, 1982 = f(3-1982) = f(2- 1982 + 1982) > f(2 - 1982) + f(1982) =
£(1982 + 1982) + £(1982) > 3£(1982), implying that £(1982) < 660. On the
other handf(1982) = f(198042) > £(1980) + f(2) = f(3-660) = 660. Thus,
£(1982) = 660.

m is an odd integer thefm,2) = 1 and we

22. It is obvious thatf(1) If
= ). Hence, ifm is an odd integer anfl(m) = m,

havef(2m) = f(2)f(m)
thenf(2m) = 2m.

Let's try to find the value off(3). There are many ways of doing this, for
example through the following, rather artificial, reasoning (rememberfihgtis
strictly increasing):

2£(7) = F)f(7) < FB)F(T) = £(21) < f(22) = f(2)£(11) = 2f(12) <
2f(14) = 2f(2)f(7) = 4f(7). Thus,2f(7) < f(3)f(7) < 4f(7), giving 2 <
f(3) <4,ie.f(3) =

Suppose now there are some positive integeiar which f(n) # n. Let then
ny be the smallest among them. We have, of coutge; 3 and for alln such that
1 <n<ng f(n)=n.

From this it follows thatf (ny) > ny and morover, sincé(z) is strictly increa-
sing, f(n) > nforalln > ny (x).

Let now then consider two cases:

(1) If ng is odd then(2,ng — 2) = 1 and s02(ny — 2) = f(2)f(ng — 2) =

= 1.
2f(m
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f(2(ng — 2)). However, forn, > 3, 2(ng — 2) > ny and so, according tox),
f(2(ng — 2)) > 2(ng — 2), giving 2(ng — 2) > 2(ny — 2), thus a contradiction.
(2) If ngis even then(2,nyp — 1) = 1 and s02(ny — 1) = f(2)f(np — 1) =
f(2(ng—1)). Again, forny > 3,2(ny—1) > ng and sof (2(ng—1)) > 2(no—1),
giving 2(ng — 1) > 2(ny — 1), a contradiction.
In conclusion, such, doesn’t exist and henc&n) = n for alln € N.

23. Let’s try some values of andy. Takingz = y = 1 vyields f(1) + f(1) =
f(3)+ f(—1), butsincef(—1) = f(1) thenf(3) = f(1).

Taking nowz = 1 andy = 2 gives f(1) + f(2) = f(5) + f(—2), but if we
takex = 2 andy = —1thenf(2) + f(—1) = f(—2) + f(3). From the two last
expression we find that(5) = f(3).

Since thenf(1) = f(3) = f(5) we may suspect thgt(n) has the same value
for all odd integers.

This is in fact correct and in order to prove it just take first 1 andy = m
(giving f(1) + f(m) = f(1 4 2m) + f(—m)) and thernx = m andy = —1 (so
we getf(m)+ f(—1) = f(—m) + f(—1+ 2m). From the two last expression we
find thatf(2m — 1) = f(2m + 1) for all m € Z.

Another consequence of the equatiti) + f(m) = f(1+ 2m) + f(—m)) is
now thatf(m) = f(—m). Since thenf(zx) ie an even function, it is suficcient to
find the expression fof (x) for non-negative integers

Let nowz = n andy = —(2k + 1). Then our equation implieg(n) + f( —
(2k +1)) = f(—n(1+4k)) + f(— (2k + 1)(1 — 2n)), which, after cancelling
f(m) for oddm, means thaff (n) = f( — n(1 + 4k)) = f((1 + 4k)n). If we
instead take: = —(2k + 1) andy = nthen f( — (2k+1)) + f(n) = f(— (2k +
1)(1+2n)) + f(n(4k +3)), i.e. f(n) = f((4k+3) ). Thusf(n) = f(mn) for
any odd inegermn.

Every positive integen can be written in forrm = 2“m for some non-negative
integera and an odd integem. Hencef(n) = f(2°m) = f(2%). Thus any
function with of the kind we are looking for is determined by the valyés),
£, £(2), £(2%), £(2°), f(2*) and so on, which may all be chosen arbitrary. Al
other values are given bf(n) = f (2a) as above. For negative integérsve have
that f(k) = f(—k).

Finally let's check that such functions satisfy the equations. Clegryl) =
f(1).If z = 0 ory = 0 then the equation becomes an identity. So suppose that
2%m andy = 2°n for some non-negative integersandb and oddm, n. Then the

37



left-hand side of the equation becomg&®m) + f(2°n) = f(2%) + f(2°), while
the right-hand side become§2°m(1+2y)) + f(2°n(1 —2z)) = f(2*) + f(2"),
since bothm(1 + 2y) andn(1 — 2x) are odd.

Thus the solution is complete.

24. Sincef : N — N, it ishould be clear thaf(1) > 1. Moreover, f(2) >
f(f(1)) > 1, which implies thatf(2) > 2. The same argument cannot however
be extended for showing thgt3) > 3.

Nevertheless it is possible to prove slightly stronger statement, from which the
inequality f(n) > n follows immediately.

Statement: lin > n thenf(m) > n.

This statement is obviously true fer= 1 sincef(m) > 1 by the definition of
f(m). So let us assume that the statement is true for sgme 1, i.e. assume that
If m > ng thenf(m) > ny.

Now, suppose that > ny+ 1. hencem —1 > ny and then, by the assumption,
f(m — 1) > n,. By the assumption agaitf{ f(m — 1)) > n,. Using the property
of f(m) in the statment of the problem, we know thgtm) > f(f(m — 1)).
Hence f(m) > f(f(m — 1)) > no. This means thatf(m) > ny + 1 and, by
induction, the statment is true for alle N,

As a special case, we hayén) > n for all n € N. From this it follows that
f(n+1)> f(f(n)) > f(n), proving that the functiorf(n) is strictly increasing.

Finally, suppose that(n) # n for somen € N. Then, of coursef(n) > n and
we getf(n) > n + 1. This implies thatf(n + 1) > f(f(n)) > f(n + 1), which
Is impossible.

Therefore,f(n) = n foralln € N.

25. As in the solution of Example 19, we discover that the constant function
fo(x) = 1is a solution to the equation, and then that for non-constant solution
f(z) we havef (zy) = f(z)f(y) forall x,y € RT,

Now we find thatf(a)/“ ) = f(a"™) = f(a"a’) = (by the previous equa-
lity) = f(a”) f(a¥) = f(a)"™ f(a)!W = f(a)=T/¥) from which follows that
flz+y) = f(x)+ f(y) forall z,y € RT.

By the same methods as in Example 9 one can show nowfthat= xf(1)
for all z € QT. At the same time, setting = y = 1 into the equatiory (zy) =
f(z)f(y), we getf(1) = 1, and thusf(z) = x for all z € Q*. What then remains
is to extend this formula to at € R™.
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Suppose that for some > 0 we havef(z) < x (in the casef(x) > z the
argument is similar). Let’s pick up a rational numlaesuch thatf(z) < a < =x.
Then we will havef (z) = f(a+ (z —a)) = f(a) + f(z —a) > f(a) = a, which
contradicts the choice af. Hencef(z) = 1 and f(z) = x are the only solutions
to the problem.

26. By lettingx = y = 0 andu = v, we getdf(0)f(u) = 2f(0). So either
f(u) = 1/2 for all u € R, or f(0) = 0. The constant functiorf(u) = 1/2 is
certainly a solution. Hence assume tlig) = 0.

Puttingy = v = 0we getf(z)f(u) = f(zu) (). In particular, takinge = v =
1, we havef(1)* = f(1). Hencef(1) = 0 or f(1) = 1. Suppose thaf(1) = 0.
By takingz = y = 1 andv = 0, we getd = 2f(u). Thusf(z) = 0 for all u € R.
That is certainly a solution as well. We can thus assumejthigt= 1.

Settingz = 0 andu = v = 1, we get2f(y) = f(y) + f(—y), which reduces
to f(—y) = f(y). This means thaf(x) is an even function and so we need only
considerf(z) for positivez.

Next we show thatf(r) = r2 for all » € Q. The first step is to show that
f(n) = n*forall n € N. This is done by the induction on It is obviously true
for n = 0 and 1. Suppose it is true for — 1 andn. Then lettingz = n and
y = u = v = linto the equation, we getf(n)+2 = f(n—1)+ f(n+1). Hence

f(n+1)=2n*4+2— (n—12 = (n+1)% Hence the statment is true for+ 1.
2

Now the relation £) implies thatf(n)f(%) = f(m), sof(%) = % for all
m,n € N. Hence we have established tifat) = * for all » € Q*. By the fact
that f(z) is even,f(r) = r* forall r € Q.

Now it is natural to suspect thgti(z) = 2 for all z € R, so this is what we
should try to prove in the final step. Since we don’t have the conditionfthatis
continous, we cannot make use of the standard procedure for those cases.

From the relationX) above, we have (z?) = f(x)* > 0, so f(2?) is always
non-negative. Hencg(x) > 0 for positivez and, again by the fact thgt(x) is
even,f(z) > 0forall z € R.

Putting nowu = y andv = z, we get(f(z) + j‘"(y))2 = f(z* 4+ 9?), so
f(a?+4%) = fx)? +2f(x) f(y) + f(y)? > f(2)? = f(a?). For anyu andv such
thatu > v > 0, we may puty = 2 andu = 2% + ¢%, and hencef(u) > f(v). In
other words,f(x) is an increasing function.

Thus for any reak we may take a sequence of rationg/sall less than, that
converge tor and another sequence of rationa|sall greater tham, which also
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converge tor. Then we get? = f(r,) < f(z) < f(s,) = s for all 2 € R and

hencef (z) = 2.

The final answer is then: there are three possible functions solutions, namely
1
f(z)=0foralz e R, f(z) = 5 forallz € Ror f(z) = 2°.

ADDITIONAL PROBLEMS

Here follows some more problems, this time without solutions offered. Instead,
after the problems there are some hints and answers.

Problems.

27. (Poland, 1992) Find all functions: R — R suchthatf(z+vy)— f(zr—vy) =
f(x)f(y) forall x,y € R.

28. Find all functions that satisfy the equatigfl — z) + zf(x — 1) = = for all
X
realx # 0,z # 1 andz # —1.

29. Find all continous functiong : R — R which satisfy the equatiofi(x +vy) =
f(z)+ f(y) +xyforall z,y € R.

30. Find all functionsf : R — R satsifyingzf(y) + yf(x) = (z + y)f(z)f(y)
forall z,y € R.

31. Find all injective (one-to-one) functions: R — R such thatf(f(a:) + y) =
f(x+y)+1forallz,y € R.

32. Find all functionsf : Z — Z satisfying following conditionsf(1) = 1 and
flx+y)(f(2) = fly) = fle —y)(f(x) + fy)) forallz,y € Z.

33. Find all polynomialgy(z) satisfying the equatiop(z® — 2z) = (p(z — 2))2
for all x € R.
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34. Find all continous functiong : R — R such thatf(1) = 1 andf+/x2 + 32 =
f(z)+ f(y) forall z,y € R,

35. Find all functions defined far > 0, such that: f(y) + vy f(z) = f(xzy) for all
x,y € RT,

36. Find all continous solutiong : R — R to the equatiorf (z+y) — f(x —y) =
f(x)forall z,y € R.

37. Find all functionsf : R — R, continous it = 0 which satisfy the equation
flx +y) = f(z) + fly) + 2y(x +y) for all 2,y € R. (Compare with problem
25.)

38. Find all functionsf : R — R which solve the equatiofi(z +y) + f(x —y) =
2f(x)cosy forall z,y € R.

39. Supposef : N — N is a strictly increasin function such th@tf(n)) = 3n
for all n € N. Find all possible values of(1977).

40. (AMM, Problem E2176) Find all functiong : Q — Q such thatf(2) = 2
z+y\ _ fla)+ fy)
and =
1)) = o=t
41. (Austria-Poland, 1997) Show that there is no functfonZ — 7Z such that
flz+ f(y) = f(z) —y forallz,y € Z.

42. (Ukraine, 1997) Find all functiong : QT — QT such thatf(z + 1) =
f(z)+1 and f(2%) = (f(:c))2 forallz € Q.

for all rationalx # .

43. (IMO short-list, 1999) Suppose that the functibn R — R satisfies two
conditions:|f(z)| < 1forallz € R and f(:c+i—3)+f(x) — f(x+é)+f(x+%)
for all x € R. Prove thatf(z) is periodic.

44, (IMO, 1981) The functiory(z, y) satisfies:

f0,y) =y+1, f(z+1,0) = f(z, 1) and f(z + 1,y +1) = f(z, f(z+1,y))
for all non-negative integers, y. Find f (4, 1981).

45. (IMO, 2004) Find all polynomiald’(x) with real coefficients which satisfy
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the equality
Pla—b)+P(b—c)+ P(c—a)=2P(a+b+c)
for all real numbers, b, ¢ such thatub + bc + ca = 0.

46. (IMO, 1994) LetS be the set of all real numbers greater thanh Find all
functionsf: S — S such thatf (z + f(y) +zf(y)) =y + f(z) + yf(z) for all
f(@)

x,y € S, and—= is strictly increasing on each of the intervald < = < 0 and
X
0< .

47. (IMO, 1992) Find all functionsf : R — R such thatf(z? + f(y)) =
2
y+ (f(z)) forallz,y € R.

48. (Iran, 1999) Suppos¢ : R — R is a strictly decreasing function which
satisfy the equation

fle+y)+f(f()+fly) = f(f(f(a:)+y) +f(a:+f(y))) forallz,y € R+,
Prove thatf(f(z)) = z forall z € R™.

49. (IMO, 1988) A functionf is defined on the positive integeisby:

f)=1,f3)=3,f(2n) = f(n), f(4n+1) =2f(2n+1) — f(n), and
fAn+3)=3f(2n+1) —2f(n)foralln € N,
Determine the number of positive integers< 1988 for which f(n) = n.

50. (IMO, 1986) Find all functiond () defined on the non-negative real numbers
and taking non-negative real values such thig2) = 0, f(x) #0for0 < z < 2,
andf(zf(y))f(y) = f(z + y) for all non-negative reat, y.

51. (IMO, 1998) Consider all functiong : N — N satisfying f (£*f(s)) =
s(f(t))2 for all s,¢ € N. Determine the least possible valuefgf 998).

52. (IMO, 1990) Construct a functiofi : Q* — Q* such thatf (zf(y)) = J(z)

()
forall z,y € Q.

Hints and answers.

27. Hint: Try some values.
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Answer: f(z) = 0.

28. Hint: Create a new equation.
3—x

Answer: f(x) = A=)

29. Hint: One way of solving is the standard procedure, findfig) for integers
n, extend it toQQ and then tdR.

: 1. :
Another way is to guess thd{z) = 53:2 Is one solution. Are there more?

Answer: f(z) = 3z* + cx for any real constant

30. Hint: Try some values.

Answer:f(x) =0or f(z) = { i :; i 7_é 8 for any real constant

31. Hint: Let x andy change places.
Answer: f(z) =z + 1.

32. Hint: Show thatf(n) is odd. Take them = 2 andy = 1 and consider some
cases.

0 if n=2k 0 if n=3k
Answer: f(n) = 1 if n=4k+1, or f(n)= 1 fn=3k+1,
—1 if n=4k+3 —1 if n=3k+2

fork € Z, or f(n) =nforalln € Z.

33. Hint: Solve first the functional equatiof(z?) = (q(aj))Q, whereq(z) is a
polynomial.

Answer:p(xz) =0 or p(x) = (z + 1)" for eachn € N,

34. Hint: Find the expression fof () first for z in N, then inQ.
Answer: f(x) = z?.

35. Hint: Transform to a Cauchy-type equation.
Answer: f(z) = cx In x for any real constant
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36. Hint: Standard procedure.
Answer: f(x) = cx for any real constant

37. Hint: One way of solving is the standard procedure, findfig) for integers
n, extend it toQQ and then tdR. But first you will have to show that the continuty
in z = 0 will imply that f(z) is continous for allz € R.

Another way is to discover that:y(z+y) is a part of the expression far+)?

1 5. :
and thus guess thd(z) = §x3 is one solution. Are there more?

Answer: f(z) = 3z* + ca for any real constant

38. Hint: Start with some values far andy.
Answer: f(z) = acos x + bsin z for any choice ofy, b € R.

39. Hint: Prove thatf(3k) = 3f(k). Show then that foB” < n < 2-3™
the function isf(n) = n + 3™, while for 2 - 3™ < n < 3™ one must have
f(n) = 3n — 3™

Answer: f(1997) = 3804.

f(m)
fn)

40. Hint: Find £(0) and f(1). Show then thaf (=) = for all m,n € 7,
n

n # 0.

Answer: f(x) = .

41. Hint: Show thatg(z) = f(f(x)) is injective (in fact linear) and then show
that f (=) satisfy the first of Cauchy’s equations. Find then the contradiction to the
existens of the solution.

42. Hint: Countf((% + n)2) in two different ways.

Answer: f(z) = x.

1
43. Hint: Show that the functiop(x) = f(x+6) — f(z) is periodic and then that
the functionh(z) = f(z + 1) — f(x) is periodic.
Answer: The sortest period fgi(z) is 1.

44. Hint: Calculatef(1,n), f(2,n), f(3,n) and find the pattern.
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Answer:f(4,1981) = 2% —3, atower of 1984 2's less 3. In generf{4, n) =

22" _ 3, atower of(n + 3) 2s less 3.

45. Hint: For avery real number the triple (a, b, c) = (6t, 3t, —2t) satisfy the
conditionab + bc + ca = 0. What implication does it have on the equation?

Answer: P(x) = az* + 322 for any choice of real numbersand.

46. Hint: Start by takingy = . Find out thatr + f(z) + = f(z) is a fixed point of
f(x) for eachx € S. How many fixed points cali(x) has at most?

—X
r+1

47. Hint: Prove thatf(0) = 0. Show thatf(f(y)) = y for all realy. Show
thereafter thaf (v + y) = f(x) + f(y).

Answer: f(x) = .

Answer: f(z) =

48. Hint: Start withy = = and then change to f(z). Assume thaff (f(z)) > =
and don't forget to use the fact thatx) is strictly decreasing.

49. Hint: Think of the numbers in base 2, i.e. et be the binary representation

of n. Prove thereafter (using the induction) that the functfgn,) returns the
numberms which has the same digits as but in the opposite order. The problem
reduces then to finding the number of all integersi988 with the symmetric
binary representation. Find that the number of symmetrical binary numbers with
k digits is2L~1/2 How many (binary) digits do we need in order to not exceed
19887

Answer:92.

50. Hint: Show thatf(z) = 0 for all z > 2. How shouldf(x) look like for
0<x<2?

2—x

2 if0<z<?2
Answer:f(m):{ 0 £ > 9

51. Hint: If f(1) = k, show thatk divides f(n) for all n. Show then that the
f(n)

functiong(n) = e also satisfies teh given equation. Since we are looking for
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the smalest value of(1998) we may assumg (1) = 1.

Show then that ip is a prime number thaf(p) is a prime number as well and
f(f(p)) = p. Show finaly thatf (n) can be defined arbitrary on primes as long as
the conditionsf(p) = ¢ (wherep andq are prime) and (¢) = p are satisfied.

Answer:2-2-2-3.-5 = 120.

52. Hint: Show thatf(zy) = f(x)f(y) andf(f(:z:)) = éfor all z,y € QF.

Forx € QT constructf(x) based on the prime faktorization of numerator and
denumerator:z = pi'p,y*...p.*, wherep; are prime numbers and, ¢ Z, since
we havef(z) = (f(p1))" (f(p2))™...(f(px))™ (»). Thus it is enough to define
a suitable function on the set of all prime numbéps, p2, ps3, ...} and, of course,
addf(1) = 1.

A 0 ibl t fi o Pj+1 if ] is odd, 1

nswer: One possible constructionfi§p;) = p%l if jiseven’ f(1) =

and extend it to whol&™ using ).
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