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INTRODUCTION

Functional equations is a rather popular topic at the IMO and other mathematical
competitions, both national and international. At least 19 IMO-problems can be
classified as functional equations and all these problems are listed below. The
question posed in this type of problems is to find all functions satysfying the given
equation and, possibly, some additional conditions like continuity, monotonicity
or being bounded.
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There however is no general method of solving this kind of problems and the
present text offers only some basic ideas that may turn out to be useful. Some type
of tricks are used when the functions considered aref : N → N, other for funk-
tionsf : Q → Q, and still different methods forf : R → R. Yet another approach
may be used when we know that the functions are looking for are polynomials.
(Throughout this textN, Z, Q andR denotes the sets of positive integers, integers,
rational numbers and real numbers respectively. An additional + sign, likeR+,
means ”positive”.N0 denotes the set of all non-negative integers{0, 1, 2, 3, ...}.)

As an exemple of a functional equation, consider the famous Cauchy’s equation
f(x + y) = f(x) + f(y), wheref : R → R andx, y ∈ R. This very general
equation has in fact a very limmited family of solutions as soon as one add som
extra constrain. For example, if one demands that the solution has to be a con-
tinuous function then the only solutions are thetrivial ones: the linear functions
f(x) = cx, for any real constantc

Even if one demands the continuty only in one sigle pointx0 ∈ R, or if one asks
for f bounded in some interval(a, b) ⊂ R, or monotone, then the equation has still
only the trivial solutions. In order to find some non-trivial solutions one has to look
beyond Lebesgue measurable functions and that such pathological solutions exist
was proved by G. Hamel (in Math. Ann. 60, (1905), 459-462).

The list of all functional equation that occurred at the IMO is the following (many
more such problems has made to the IMO short-lists):

1968.5. Let f be a real-valued function defined for all real numbers, such that for
somea > 0 we have

f(x + a) =
1

2
+

√
f(x)− f(x)2 for all x.

Prove thatf is periodic, and give an example of such a non-constantf for a = 1.

1972.5. f(x) andg(x) are real-valued functions defined on the real line. For allx

andy, f(x+ y)+ f(x− y) = 2f(x)g(y), f is not identically zero and|f(x)| ≤ 1
for all x. Prove that|g(x)| ≤ 1 for all x.

1975.6. Find all polynomialsP (x, y) in two variables such that:

(1) P (tx, ty) = tnP (x, y) for some positive integern and all realt, x, y:
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(2) for all realx, y, z : P (y + z, x) + P (z + x, y) + P (x + y, z) = 0;
(3) P (1, 0) = 1.

1977.6. The functionf(x) is defined on the set of positive integers and its values
are positive integers. Given thatf(n+1) > f(f(n)) for all n, prove thatf(n) = n

for all n.

1981.6. The functionf(x, y) satisfies:
f(0, y) = y + 1, f(x + 1, 0) = f(x, 1) andf(x + 1, y + 1) = f(x, f(x + 1, y))

for all non-negative integersx, y. Findf(4, 1981).

1982.1. The functionf(n) is defined on the positive integersN and takes non-
negative integer values. Moreoverf(2) = 0, f(3) > 0, f(9999) = 3333 and for
all m, n ∈ N: f(m + n)− f(m)− f(n) = 0 or 1. Determinef(1982).

1983.1. Find all functionsf defined on the set of positive real numbersR+ which
take positive real values and satisfy:

f(xf(y)) = yf(x) for all x, y; andf(x) → 0 asx →∞.

1986.5. Find all functionsf defined on the non-negative real numbers and taking
non-negative real values such that:f(2) = 0, f(x) 6= 0 for 0 ≤ x < 2, and
f(xf(y))f(y) = f(x + y) for all x, y.

1987.4. Prove that there is no functionf from the set of non-negative integersN0

into itself such thatf(f(n)) = n + 1987 for all n ∈ N0.

1988.3. A functionf is defined on the positive integersN by:

f(1) = 1, f(3) = 3, f(2n) = f(n), f(4n + 1) = 2f(2n + 1)− f(n), and
f(4n + 3) = 3f(2n + 1)− 2f(n) for all n ∈ N.

Determine the number of positive integersn ≤ 1988 for whichf(n) = n.

1990.4. Construct a function from the set of positive rational numbers into itself

such thatf(xf(y)) =
f(x)

y
for all x, y.
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1992.2. Find all functionsf defined on the set of all real numbers with real values,
such thatf(x2 + f(y)) = y + f(x)2 for all x, y.

1993.5. Does there exist a functionf : N → N such thatf(1) = 2, f(f(n)) =
f(n) + n for all n ∈ N, andf(n) < f(n + 1) for all n ∈ N?

1994.5. Let S be the set of all real numbers greater than−1. Find all functions
f : S → S such thatf

(
x + f(y) + xf(y)

)
= y + f(x) + yf(x) for all x, y, and

f(x)

x
is strictly increasing on each of the intervals−1 < x < 0 and0 < x.

1996.3. Find all functionsf : N0 → N0 such thatf
(
m+f(n)

)
= f

(
f(m)

)
+f(n)

for all m, n ∈ N0.

1998.6. Consider all functionsf : N → N satisfyingf(t2f(s)) = sf(t)2 for all
s, t ∈ N. Determine the least possible value off(1998).

1999.6. Determine all functionsf : R → R such that
f(x− f(y)) = f(f(y)) + xf(y) + f(x)− 1 for all x, y in R.

2002.5. Find all real-valued functions on the set of real numbersR such that
(f(x) + f(y))((f(u) + f(v)) = f(xu− yv) + f(xv + yu)

for all x, y, u, v ∈ R.

2004.2. Find all polynomialsP (x) with real coefficients which satisfy the equality
P (a− b) + P (b− c) + P (c− a) = 2P (a + b + c)

for all real numbersa, b, c such thatab + bc + ca = 0.

Most of these problems are considerate in this text. Otherwise, the complete solu-
tions may be found on the Web, at http://www.kalva.demon.co.uk/imo.html. Ho-
wever I suggest that the reader try to solve the problems on his own, before con-
sulting the proposed solutions.
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SOME EASY TRICKS

1. Transformation of variables.

This is a really basic trick and may be used as a part of a solution of a more
complex problem. Generally, given an equation of a typef(g(x)) = h(x), with
g(x), h(x) given functions, then, ifg(x) has an inverse then, lettingt = g(x), we
getf(x) = h(g−1(x)).

Let’s solve the following equation:

Example 1. Find all functionsf(x) defined for all real numbers, such thatf
(x + 1

x

)
=

1 +
1

x
+

1

x2 for all x 6= 0.

Solution.By letting t =
x + 1

x
, we getx =

1

t− 1
. Hence, after some calculations,

the equation reduces tof(t) = t2 − t + 1. Thusf(x) = x2 − x + 1. �

2. Creating simultaneous equations.

This is another simple trick, which often works when the equation involves two
valuesf(g(x)) andf(h(x)), for two different algebraic expressionsg(x) andh(x).
Consider the equation:

Example 2. Find all functionsf : R → R such thatx2f(x)+f(1−x) = 2x−x4

for all x ∈ R.

Solution. Replacingx by 1− x, we have(1− x)2f(1− x) + f(x) = 2(1− x)−
(1− x)4. Sincef(1− x) = 2x− x4 − x2f(x) by the given equation, substituting
this into the last equation and solving forf(x), we getf(x) = 1− x2.

Now we should check that this function satisfiy the given equation:x2f(x) +
f(1− x) = x2(1− x2) +

(
1− (1− x)2) = 2x− x4. �
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One more example:

Example 3. Solve the equationf
(1

x

)
+

1

x
f(−x) = x, wheref is a real valued

function defined for all real numbers except 0.

Solution. Replacingx by
1

x
yeldsf(x) + xf

(
− 1

x

)
=

1

x
. Replacing nowx by

−x leads to a new equationf(−x) − xf
(1

x

)
= −1

x
. From this equation and the

original one can we now find the functionf(x): Multiply the first equation withx

and add to the last one. What we get is2f(−x) = x2 − 1

x
. Replacing once again

x by −x we get the final answer:f(x) =
x3 + 1

2x
. It remains to verify that this

function satisfies the given eqation. �

Remark. In most cases we solve the equation under the (silent) assumption that
the functionf(x) exists. As a consequence, it is necessary to check that the obtai-
ned function really satisfies the given equation.

3. Using symmetry.

If possible, one should use symmetry when dealing with the equation involving
more than one variable.

Example 4. Find all functionsf : R → R, such thatf(x + y) = x + f(y) for all
x, y ∈ R.

Solution.Left-hand side of the equation is symmetric inx andy. Thusx+f(y) =
f(x + y) = f(y + x) = y + f(x), which can be written asf(x)− x = f(y)− y,
for all x, y ∈ R. Hencef(x) − x is constant for allx ∈ R, and the answer is
f(x) = x + c, for any choice of the real constantc, provided that those functions
satisfy the given equation. This however can be easily checked. �
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Example 5. Find all functionsf : R → R, such thatf(x + y)− f(x− y) = 4xy

for all x, y ∈ R.

Solution. Let u = x + y andv = x − y. Then the equation can be written as
f(u) − f(v) = u2 − v2, or f(u) − u2 = f(v) − v2. Since this relation holds
for arbitraryu, v ∈ R thenf(u) − u2 is constant. Thus,f(u) − u2 = c and the
answer is the family of functionsf(x) = x2+c, for any choice of a real constantc,
provided these functions satisfy the given equation. This however is easy (although
necessary) to check. �

4. Evaluating f(x0) for some special choices ofx0.

Findingf(x0) for some values ofx0, like f(0), f(1), f(2), f(−1) and so on, may
give some ideas on the structure off(x). This seems to be specially usefull when
the equation involves more than one variable.

Example 6. (Korea, 1988) Findf : R → R, such thatf(x)f(y) = f(xy) + x + y

for all x, y ∈ R.

Solution. Letting y = 0 we getf(x)f(0) = f(0) + x. Hence,f(0) 6= 0 and

f(x) =
x

f(0)
+ 1. Taking nowx = 0 we find thatf(0) = 1. Thusf(x) = x + 1

and it is easy to verify that this function satisfies the given eqation. �

In the next example, letQ+ denote the set of positive rational numbers.

Example 7. Find all functionsf : Q+ → Q+, such thatf
(
x +

y

x

)
= f(x) +

f(y)

f(x)
+ 2y, for all x, y ∈ Q+.

Solution. By letting (x, y) be (1, 1), (1, 2) and (2, 2) we find out thatf(2) =

f(1) + 3, f(3) = f(1) +
f(2)

f(1)
+ 4 and f(3) = f(2) + 5. From these three

equalities we can deduce thatf(1) = 1, f(2) = 4 andf(3) = 9. This leads to the
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hypothesis thatf(n) = n2, for at leastn ∈ N.
This hypothesis may be now verified by takingx = y = n and using the

obtained relationf(n + 1) = f(n) + 1 + 2n together with the mathematical
induction.

We may now suspect that the only solution of the equation is the function
f(x) = x2, for all x ∈ Q+. Let’s take firstx = n, y = m and thenx =

m

n
,

y = m (for n, m ∈ N). We get

f
(
n +

m

n

)
= f(n) +

f(m)

f(n)
+ 2m = n2 +

m2

n2 + 2m and

f
(m

n
+ n

)
= f

(m

n

)
+

f(m)

f
(

m
n

) + 2m = f
(m

n

)
+

m2

f
(

m
n

) + 2m.

From the last two equalities it follows thatn2 +
m2

n2 = f
(m

n

)
+

m2

f
(

m
n

) , which

can be expressed as

0 = f
(m

n

)
− m2

n2 − n2 +
m2

f
(

m
n

) = f
(m

n

)
− m2

n2 − n2

f
(

m
n

)(
f
(m

n

)
− m2

n2

)
=(

f
(m

n

)
− m2

n2

)(
1− n2

f
(

m
n

))
.

Let
p

g
∈ Q+, wherep, q ∈ N. If 1 − q2

f
(

p
q

) 6= 0 then, according to the equality

above,f
(p

q

)
− p2

q2 = 0, i.e.f
(p

q

)
=

p2

q2 =
(p

q

)2
.

If 1 − q2

f
(

p
q

) = 0 then,
f(2q)

f
(2p

2q

) =
4q2

f
(

p
q

) 6= q2

f
(

p
q

) = 1. Thus
f(2q)

f
(2p

2q

) 6= 1,

and then, lettingn = 2q, m = 2p into the equality above, we find again that

f
(p

q

)
= f

(2p

2q

)
=

(2p)2

(2q)2 =
(p

q

)2
.

Hence the answer isf(x) = x2, and it is easy to verify that this function satis-
fies the equation. �

5. Polynomials.

When the functions we are looking for are polynomials there are several several
properties one should take into the consideration. The most importatnt are: the
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degree, the finite number of zeroes (unless the polynomial is the trivial one:p(x) ≡
0) and the Factor Theorem (stating thatp(α) = 0 if and only if x − α is a divisor
of p(x)).

Example 8. Find all real polynomialsp(x) such thatp(x+1)+2p(x−1) = 6x2+5
for all x ∈ R.

Solution. First we observe thatp(x) has to be of degree 2, hence we may write
p(x) = ax2 + bx + c. Substituting this expresion into the equation we geta(x +
1)2 + b(x + 1) + c + 2a(x − 1)2 + 2b(x − 1) + 2c = 6x2 + 5, which reduces to
3ax2 + (−2a + 3b)x + (3a− b + 3c) = 6x2 + 5. Identifying the coefficients gives

a = 2, b =
4

3
, c =

1

9
. Hencep(x) = 2x2 +

4

3
x +

1

9
and verification that this

polynomial satisfies the given relation is an easy task. �

Example 9. Find all real polynomialsp(x) such thatxp(x− 1) = (x− 2)p(x) for
all x ∈ R.

Solution. Letting x = 0 we get0 = −2p(0), i.e.p(0) = 0. Similarily, for x = 2
we getp(1) = 0. Hencep(x) is divisible byx and by(x − 1) and we can write
p(x) = x(x− 1)q(x), whereq(x) is a polynomial of degree 2 less than the degree
of p(x).

Replacingp(x) with x(x− 1)q(x) in the original equation givesx(x− 1)(x−
2)q(x − 1) = (x − 2)x(x − 1)q(x) for all x ∈ R. Henceq(x − 1) = q(x) for all
x ∈ R.

Let now x0 be any fixed real number and consider the polynomialh(x) =
q(x) − q(x0). It is obvious thath(x0) = 0. Moreover, h(x0 + 1) = q(x0 +
1) − q(x0) = q(x0) − q(x0) = 0, and, usig the induction, one can show that
h(x0 + n) = 0 for all n ∈ Z.

Since a non-zero polynomial only has a finite number of zeroes, thenh(x) ≡ 0.
It implies thatq(x) is a constant polynomial, and thenp(x) = cx(x − 1), for any
choice of a real constantc.

It only remains to check that the polynomialsp(x) = cx(x − 1) satisfy the
original equation. �
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MORE SOFISTICATED METHODS

8. Continous functions.

Some equations involving continous functionsf : R → R may be solved in the
following way: Find first some special values, likef(0) or f(1). By induction
determine then the valuesf(n) for all n ∈ N, followed by the valuesf(n) for all

n ∈ Z. In the next step find the valuesf
(1

n

)
for n ∈ Z and then findf

(m

n

)
for

all
m

n
∈ Q. Finally, use thecontinuityof f(x) and the fact that the set of rational

numbers isdensein R, to determaine the formula forf(x) for all x ∈ R.

That the the set of rational numbersQ is dense inR means that for eachx ∈ R
there exists a sequence{xn} of rational numbers such thatlim

n→∞
xn = x.

Suppose a functionf(x) is defined on the subsetI ⊂ R Then we say that
f(x) is continuous at a pointx0 ∈ I if, for each sequence{xn} ⊂ I such that
lim
n→∞

xn = x0, we havelim
n→∞

f(xn) = f( lim
n→∞

xn) = f(x0).

We say thatf(x) is continous onI if it is continous at each pointx0 ∈ I.

As an illustration consider the already mentioned continous version of Cauchy’s
equation:

Example 10. Find all continous functionsf : R → R such thatf(x + y) =
f(x) + f(y) for all x, y ∈ R.

Solution. Letting x = y = 0 into the equation we getf(0) = 0. By induction
one shows easily thatf(nx) = nf(x), for all n ∈ N and all x ∈ R. Hence
f(n) = nf(1), for all n ∈ N.

If we in the equation lety = −x then we getf(0) = f(x) + f(−x). Thus
f(−x) = −f(x) for all x ∈ R. For n ∈ N we have thenf(−n) = −f(n) =
−nf(1), which means thatf(n) = nf(1) is valid for alln ∈ Z.

Suppose now thatm ∈ N andn ∈ Z. Thenn · f
(m

n

)
= f

(
n · m

n

)
= f(m) =

mf(1). Thusf
(m

n

)
=

m

n
f(1), i.e.f(x) = xf(1) is valid for allx ∈ Q.

Suppose finally thatx ∈ R but x /∈ Q. Then, sinceQ is dense inR, con-

10



sider a sequence{xn} od rational numbers such thatlim
n→∞

xn = x. By the con-

tinuity of f(x) we havef(x) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = lim
n→∞

(
xnf(1)

)
=

f(1) lim
n→∞

(xn) = f(1) · x.

Hencef(x) = xf(1) for all x ∈ R. Sincef(1) can be any real number then
the solution, if exists, must be of the formf(x) = cx for any real constantc. As
usual, it remains to verify that these functions satisfy the original equation.�

Example 11. Find all continous functionsf(x) defined forx > 0 and such that

f(x + y) =
f(x)f(y)

f(x)f(y)
for all x, y ∈ R+.

Solution. It is obvious thatf(x) 6= 0 for all x ∈ R+. Takingx = y we getf(2x) =
f(x)f(x)

f(x) + f(x)
=

1

2
f(x). For y = 2x we have thenf(3x) =

f(x)f(2x)

f(x) + f(2x)
=

f(x)1
2f(x)

f(x) + 1
2f(x)

=
1

3
f(x). This suggest thatf(nx) =

1

n
f(x) for all n ∈ N, and

may easily be shown by induction.

By taking x = 1 in the last equality we getf(n) =
1

n
f(1) for all n ∈ N.

Moreover,f(1) = f
(
n · 1

n

)
=

1

n
f
(1

n

)
, which means thatf

(1

n

)
= nf(1). Then,

for all m, n ∈ N, f
(m

n

)
= f

(
m · 1

n

)
=

1

m
f
(1

n

)
=

n

m
f(1).

We have that far shown thatf(x) =
1

x
f(1) for all x ∈ Q+. Using the continuity

argument this can be extended to allx ∈ R+. The answer is thenf(x) =
c

x
for

every non-zero real constantc. �

Example 12. (Croatia, 1996) Supposet is a fixed number such that0 < t < 1.
Find all functionsf : R → R, continous atx = 0, such thatf(x) − 2f(tx) +
f(t2x) = x2 for all x ∈ R.

Solution. Since the equation can be written as
(
f(x)−f(tx)

)
−

(
f(tx)−f(t2x)

)
=

x2, we may start by a substitutiong(x) = f(x) − f(tx). This will simplify the
equation tog(x)− g(tx) = x2.

Now, sincef(x) is contious atx = 0, then is obvious that eveng(x) is conti-
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nous atx = 0 and thatg(0) = f(0)− f(0) = 0.
In the equationg(x) − g(tx) = x2 we now sibstitutex by tx several times,

getting successively:
g(x)− g(tx) = x2,
g(tx)− g(t2x) = t2x2,
g(t2x)− g(t3x) = t4x2,
.......
g(tn−1x)− g(tnx) = t2(n−1)x2.

Adding all thos equalities we find thatg(x) − g(tnx) =
(
1 + t2 + t4 + ... +

t2(n−1))x2, and, sincet2 6= 1 then g(x) − g(tnx) = x21− t2n

1− t2
= x2 1

1− t2
−

x2 t2n

1− t2
.

Remembering that0 < t < 1 we can now letn → ∞. Thentnx → 0 as well

as
t2n

1− t2
→ 0 and, using the continuity ofg(x) at x = 0, we getg(x) − g(0) =

x2 1

1− t2
. Sinceg(0) = 0 then finallyg(x) =

x2

1− t2
.

We have that far found out thatf(x) − f(tx) =
x2

1− t2
for all x ∈ R. What

we can do now is to repeat the same procedure we did above: substitutionx by tx

several times. We get:

f(x)− f(tx) =
x2

1− t2
,

f(tx)− f(t2x) =
t2x2

1− t2
,

f(t2x)− f(t3x) =
t4x2

1− t2
,

.......

g(tn−1x)− g(tnx) =
t2(n−1)x2

1− t2
.

Adding those equations we find out thatf(x)− f(tnx) =
x2

1− t2
(
1 + t2 + t4 +

... + t2(n−1)) =
x2

1− t2
· 1− t2n

1− t2
.

Letting nown →∞ and using the continuity off(x) atx = 0, we getf(x)−

f(0) =
x2

(1− t2)2 for all x ∈ R.
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Thus the only possible solutions are the functionsf(x) =
x2

(1− t2)2 + c for any

choice of a real constantc. Now one must just check that those functions really
satisfy the given equation, which in fact turn out to be the case. �.

9. Additional insights.

The methods described above are unfortunately not sufficient for solving more
difficult problems of the IMO type. Some additional knowledge about the func-
tions we are looking for is necessary and the question one should ask could be the
following:

a) Is the function even? Is it odd? (In those cases it will be sufficient to consider
only x > 0.)

b) Is the function periodic? (if ”yes”, then it is sufficient to limit the domain of
the function to some finite interval.)

c) Is the function one-to-one (injective)? Is it onto (surjective)?
d) Does there exist any fixed point (i.e. suchx thatf(x) = x)?
e) Is there any symmetry?
f) When dealing with functions defined onN then the uniquness of decompo-

siton into prime factors may turn out to be useful.
g) It’s good to be aware of the alternative representation of non-negative inte-

gers in bases other than 10. The binary representation (in base 2) is quite useful
(see for example the problem 3 from the IMO 1988).

h) Again, it is sometimes useful to be aware that any non-empty subset ofN
has the least element.

Applications of some of these ideas are illustrated in the following examples.

Example 13. Consider all functionsf : R → R such thatf(x + 4) + f(x− 4) =
f(x) for all x ∈ R. Show that any such function is periodic and that there is a least
common positive periodp for all of them. Findp.

Solution. Puttingx + 4 instead ofx we getf(x + 8) + f(x) = f(x + 4). Adding
this equaition to the original one reduces tof(x+8)+f(x−4) = 0. Putting again
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x + 4 instead ofx yeldsf(x + 12) + f(x) = 0. Since thenf(x + 24) + f(x +
12) = f

(
(x + 12) + 12

)
+ f(x + 12) = 0 the the last two equations impliy that

f(x + 24) = f(x) for all x ∈ R.
Thus we have found a common periodp = 24 for all f(x) satisfying the origi-

nal equation. Now the question is if this period is the least positive one.
Consider the functionf(x) = sin

πx

12
. Since2π is the least positive period

of sin x then p = 24 is the least positive period off(x). At the same time it

is easy to show thatf(x) satisfies the condition of the problem:sin
π(x + 4)

12
+

sin
π(x− 4)

12
= sin

(πx

12
+

π

3

)
+ sin

(πx

12
− π

3

)
, which, by easy trigonometry,

reduces tosin
πx

12
.

Hencet the least common period isp = 24. �

Example 14. (Romania, 1999) Suppose that the functionf : N → N is surjective,
while the functiong : N → N is injective. Given thatf(n) ≥ g(n) for all n ∈ N,
prove thatf = g.

Solution. Let A = {n ∈ N : f(n) 6= g(n)} and supposeA is a non-empty subset
of N. Then the setB = {g(n) : n ∈ A} is also a non-empty subset ofN and
thus has the least element. Supposeg(a), for somea ∈ A, is the least element of
b. Then, sinceg(n) is injective, we haveg(a) < g(b), for all a 6= b ∈ A and, by
the definition ofA, g(a) < f(a).

Sincef(n) is surjective then there existsc ∈ N such thatf(c) = g(a) < f(a).
Note thatc 6= a. Now, sinceg(n) is injective theng(c) 6= g(a) = f(c). Hence
c ∈ A and we haveg(c) < f(c) = g(a), which contradicts the choice ofa. Thus,
the setA is empty, which means thetf(n) = g(n) for all n ∈ N, �

Example 15. (IMO, 1983) Find all functionsf : R+ → R+ such that
f(xf(y)) = yf(x) for all x, y ∈ R+, andf(x) → 0 asx →∞.

Solution. By taking x = y = 1 we getf(f(1)) = f(1). Taking x = 1 and
y = f(1) yeldsf(f(f(1))) =

(
f(1)

)2
. Combining these two equalities we receive(

f(1)
)2

= f(f(f(1))) = f(f(1)) = f(1). Hencef(1)
(
f(1) − 1

)
= 0. Since

f(1) > 0, then we must havef(1) = 1, i.e.x = 1 is a fixed point off(x).
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Taking y = x yeldsf(xf(x)) = xf(x), which means thatxf(x) are fixed
points off for all x ∈ R+.

Suppose thatf(x) has a fixed pointx0 > 1. Then, by the above,x0f(x0) = x2
0

is a fixed point as well. Then again,x2
0f(x2

0) = x4
0 is a fixed point off , and, by

induction,x2k
0 are fixed points off for all k ∈ N. Sincex0 > 1 then lim

k→∞
x2k

o = ∞

and it follows that lim
k→∞

f
(
x2k

o

)
= lim

k→∞
x2k

o = ∞, which contradicts the condition

stated in the problem. Thusf(x) has no fixed points greater than 1.
Let’s now check iff(x) has some fixed points within the interval(0, 1). If x0 is

such a point then, takingy = x0 andx =
1

x0
into the relation we get1 = f(1) =

f
( 1

x0
· x0

)
= f

( 1

x0
f(x0)

)
= x0f

( 1

x0

)
, i.e.f

( 1

x0

)
=

1

x0
. Thus

1

x0
> 1 is a fixed

point off(x), which contradicts the previous result. Hencex = 1 is the only fixed
point off(x).

We have however fund earlier thatxf(x) are fixed points off for all x ∈ R+.

Thusxf(x) = 1 for all x ∈ R+, which means thatf(x) =
1

x
. It is now easy to

check that this function satisy the given conditions. �

Example 16. (IMO, 1987). Prove that there is no functionf : N0 → N0 such that
f(f(n)) = n + 1987 for all n ∈ N0.

Solution. Suppose there is such a functionf(x). Thenf(x) must be injective
(one-to-one) becausef(a) = f(b) would implya = f(f(a))− 1987 = f(f(b))−
1987 = b. Moreover, it is clear that the functionf(f(n)) = n + 1987 will never
have the values from the set{0, 1, 2, 3, ..., 1986}, and those 1987 numbers are the
only one fromN0 that the functionf(f(n)) will miss (?).

Suppose now thatf(n) misses exactlyk distinct valuesc1, c2, ..., ck in N0, i.e.
f(n) 6= c1, c2, ..., ck for all n ∈ N0. This implies thatf(f(x)) misses the following
2k values: c1, c2, ..., ck, f(c1), f(c2), ..., f(ck) in N0. (Note that all the numbers
f(cj) are distinct, sincef is injective.)

Now, if w /∈ {c1, c2, ..., ck, f(c1), f(c2), ..., f(ck)}, then there ism ∈ N0 such
thatf(m) = w. Sincew 6= f(c1), f(c2), ..., f(ck) andm 6= c1, c2, ..., ck so there is
n ∈ N0 such thatf(n) = m. Hencef(f(n)) = w.

This proves that the functionf(f(n)) misses only the2k values{c1, c2, ..., ck,

f(c1), f(c2), ..., f(ck)} and no others. This contradicts the fact stated as (?) above
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(1987 is an odd number). �

Example 17. (IMO, 1968). Letf(x) be a real-valued function defined for all real
numbersx, such that for some positive constanta the equation

f(x + a) =
1

2
+

√
f(x)−

(
f(x)

)2
holds for allx ∈ R.

Prove thatf(x) is periodic, and, fora = 1, give an example of such a non-constant
functionf(x).

Solution. One way of solving this problem is to rewrite the equation asf(x +

a) − 1

2
=

√
f(x)

(
1− f(x)

)
, and to realize that both sides of the equality are

”symmetrical” about
1

2
. Then it seems natural to make the substitutiong(x) =

f(x)− 1

2
.

With this substitution we will haveg(x) ≥ 0 and
(
g(x + a)

)2
=

1

4
−

(
g(x)

)2

for all x. It follows that that
(
g(x + 2a)

)2
=

1

4
−

(
g(x + a)

)2
=

1

4
−

(1

4
−(

g(x)
)2

)
=

(
g(x)

)2
. Thus g(x + 2a) = g(x) for all x.

Hence,f(x + 2a) = g(x + 2a) +
1

2
= g(x) +

1

2
= f(x) sof(x) is periodic

with the period2a.
There are several examples of non-constant functions satisfying the given equa-

tion and having period= 2. One such eaxample isf(x) =
1

2

(
1 +

∣∣ cos
πx

2

∣∣)
(check this!!). An another example one can get by takingf(x) to be arbitrary in

the interval[0, 1) (for example, letf(x) = 1 for 0 ≤ x < 1), then letf(x) =
1

2
for 1 ≤ x < 2. Finally use the equalityf(x + 2) = f(x) to extendf(x) to all
other values ofx ∈ R. �

Example 18. (IMO, 1996). Find all functionsf : N0 → N0 such that
f
(
m + f(n)

)
= f

(
f(m)

)
+ f(n) for all m, n ∈ N0.

Solution. Takingm = n = 0, we getf
(
f(0)

)
= f

(
f(0)

)
+ f(0), which implies

thatf(0) = 0. Takingm = 0. we getf
(
f(n)

)
= f(n), i.e f(n) is a fixed point
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of f(x) for all n ∈ N. As a consequence, the equation becomesf
(
m + f(n)

)
=

f(m) + f(n) (?).
Now we will show by induction that ifn0 is a fixed point off(x) thenkn0 is

also a fixed point off(x) for all k ∈ N0. We know this already fork = 0 and
k = 1. If we assume thatkn0 is a fixed point off(x) for somek ∈ N0 then
f
(
(k+1)n0

)
= f

(
kn0 +n0

)
= f

(
kn0 +f(n0)

)
= f(kn0)+f(n0) = kn0 +n0 =

(k + 1)n0, and so is(k + 1)n0 also a fixed point off(x).
If 0 is the only fixed point off(x) then, by the relation(?), f(m) = 0 for all

m ∈ N0.
Otherwisef(x) has a least fixed pointn0 6= 0 (the least element in the set of all

non-zero fixed points off(x)). We want to show now thatkn0 are the only fixed
points off(x) (for k ∈ N0).

So suppose thatx is a fixed point. Thenx ≥ n0 and dividingx ny n0 we get
x = kn0+r, where0 ≤ r < n0. Thusx = f(x) = f(r+kn0) = f

(
r+f(kn0)

)
=

f(r) + f(kn0) = f(r) + kn0. From this it follows thatf(r) = x− kn0 = r. This
means thatr is a fixed point off(x) and by the minimality ofn0, it follows that
r = 0. Hencex = kn0 and we are done.

We have however shown thatf(n) are fixed points off(x) for all n ∈ N0.
Hencef(n) = cnn0 for some numberscn ∈ N0. Howeverc0 = 0 since0 =
f(0) = c0n0.

Dividing now eachn ∈ N0 by n0 we getn = kn0 + r, where0 ≤ r < n0.
Thenf(n) = f(r + kn0) = f

(
r + f(kn0)

)
= f(r) + f(kn0) = f(r) + kn0 =

crn0 + kn0 = (cr + k)n0 =
(
cr + b n

no
c
)

, wherebxc denotes the integer part ofx.

Hence the answer isf(n) =
(
cr + b n

no
c
)

, but this, of course, must be veryfied.

To this end, for eachn0 > 0 let c0 = 0 and letc1, c2, ..., cn0−1 ∈ N0 be arbitrary.

The functionf(n) =
(
cr + b n

no
c
)

, wherer is the remainder ofn divided byn0,

are all solutions: Writem = kn0 + r andn = ln0 + s, with 0 ≤ r, s < n0.
Thenf

(
m + f(n)

)
= f

(
r + kn0 + (cs + l)n0

)
= crn0 + kn0 + csn0 + ln0 =

f
(
f(m)

)
+ f(n). Thatf(n) ≡ 0 also is a solution is obvious. �

10. A good guess.

Sometimes a good guess may simplify the work considerably. There are equations
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which give a hint what the solution should look like. What then remains is to prove
that the guessed solutionf0(x) is unique. One can for example make a substitution
f(x) = f0(x) + g(x), and show thereafter thatg(x) ≡ 0, or one can even use
another methods.

Example 19. Find all polynomialsp(x) such thatp(x + 1) = p(x) + 2x + 1 for
all x ∈ R.

Solution. It is easy to guess thatp(x) = x2 is a solution to the equation. In order to
find if there are other solutions, letf(x) = p(x)−x2. Then the equation translates
to f(x + 1) = p(x + 1)− (x + 1)2 = p(x)− x2 = f(x) for all x ∈ R.

By the same method as in Example 8 above we may then show that the only
polynomialsf(x) satisfying the equationf(x + 1) = f(x) for all x ∈ R are
constant polynomials,f(x) = c. Hence the answer to the given equation are all
polynomials of the formp(x) = x2 + c for any choice of the real constantc.
However, it is again necessary to check that those polynomials satisfy the given
equation. �

Example 20. (Poland, 1992) Find all functionsf : R → R such that following
conditions are satisfied:

(1) f(−x) = −f(x) for all x ∈ R,
(2) f(x + 1) = f(x) + 1 for all x ∈ R and

(3) f
(1

x

)
=

1

x2f(x) for all x ∈ R, x 6= 0.

Solution. It is immediate to see thatf(x) = x satisfies all the conditions of the
problem. But is it the only solution?

Let g(x) = f(x) − x. Using (1), (2) and (3) it is easy to find the following
properties ofg(x):

(4) g(−x) = −g(x),
(5) g(x + 1) = g(x) and

(6) g
(1

x

)
=

1

x2g(x).

From (4) and (5) we find straightforward thatg(0) = g(−1) = 0. Suppose
now thatx 6= 0 andx 6= −1. We find that (the number above the sign of equality
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indicates which property is being used):

g(x)
(5)
= g(x + 1)

(6)
= (x + 1)2 · g

( 1

x + 1

) (4)
= −(x + 1)2 · g

( −1

x + 1

) (5)
= −(x + 1)2 ·

g
( −1

x + 1
+ 1

)
= −(x + 1)2 · g

( x

x + 1

) (6)
= −(x + 1)2 · x2

(x + 1)2 · g
(x + 1

x

)
=

−x2 · g
(
1 +

1

x

) (5)
= −x2 · g

(1

x

) (6)
= −x2 · 1

x2 · g(x) = −g(x).

Hence2g(x) = 0, i.e.g(x) = 0 for all x ∈ R, andf(x) = x is the only solution
to the equation. �

Example 21. Show that there are infinitely man functionsf : N → N such that
f(2) = 2 andf(mn) = f(m)f(n) for all m, n ∈ N.

Solution. Eachn > 1 has a unique representation as a product of prime numbers,
n = pn1

1 pn2
2 ...pnk

k , wherepi are prime numbers andni ∈ N. The condition of the
problem implies then thatf(n) =

(
f(p1)

)n1
(
f(p2)

)n2...
(
f(pk)

)nk (?). Hence the
function is defined by it’s values on the set of prime numbers, which may be then
choosen arbitrarily.

To exhibit one specific infinite family of solutions letP = {q1, q2, q3, ....} be
the set of all prime numbers greater that 2, in increasing order. For eachm ∈ N,
let the function fm be defined onP in the following way: fm(qi) = qi+m. Then
we may addfm(1) = 1 andfm(2) = 2, and, using the property (?) extend the
definition offm to the wholeN. �

11. Some useful facts.

We have already worked out one of the Cauchy’s equations but there are another
three. Since all they are already a folklore, the complet solutions are not given here,
only the final answer, and they may be used in the solutions of other problems as
given facts. However one should recommend that the reader try to solve those
equations on his own.

Note that we only mention the continous solutions. The general cases of Cauchy’s
equations (i.e. without any extra conditions) are much harder to solve.
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The only continuous solutions to the following Cauchy’s equations:

(1) f(x + y) = f(x)f(y) for all x, y ∈ R,

(2) f(xy) = f(x) + f(y) for all x, y ∈ R+,

(3) f(xy) = f(x)f(y) for all x, y ∈ R+

are the following families of functions:

(1) f(x) = cx for any real constantc > 0, or f(x) ≡ 0,

(2) f(x) = c ln x for any real constantc,

(3) f(x) = xc for any real constantc, or f(x) ≡ 0.

Example 22. (Example 10 revisited). Find all continous functionsf(x) defined

for x > 0 and such thatf(x + y) =
f(x)f(y)

f(x)f(y)
for all x, y ∈ R+.

Solution. We note thatf(x) 6= 0 for all x ∈ R+ and putg(x) =
1

f(x)
. The

the equation may be written asg(x + y) = g(x) + g(y). This is the well known
Cauchy’s equation and the continous solutions areg(x) = cx for any choice of

real constantc. Hence the solutions of the original equation aref(x) =
1

cx
for all

non-zero real constantsc. �

Example 23. Find all continous functionsf : R+ → R+ such that f
(
xy

)
=

f(x)f(y) for all x, y ∈ R+.

Solution. We note that the constant functionf0(x) ≡ 1 is a solution to the equa-
tion. Suppose then that there is another solution,f(x), and thatf(a) 6= 1 for some
a ∈ R+. Then, for allx, y ∈ R+

f(a)f(xy) = f
(
axy

)
= f

((
ax

)y
)

= f
(
ax

)f(y)
= f(a)f(x)f(y),

from which follows thatf(xy) = f(x)f(y) for all x, y ∈ R+. Since this is one
of the Cauchy’s equations (equation (3) above), we havef(x) = xc for some real
constantc 6= 0.

Putting this function into the original equation it is easy to find thatc = 1.
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Hence the equation has two solutions:f(x) ≡ 1 andf(x) = x. �

Example 24. Find all continuous functionsf : R → R satisfying the equation
f(x + y) = f(x) + f(y) + f(x)f(y) for all x, y ∈ R.

Solution. Since the right-hand side of the equation can be written asf(x)+f(y)+
f(x)f(y) = (f(x)+1)(f(y)+1)−1 then it seems natural to make the substitution
g(x) = f(x) + 1.

This leads to the (Cauchy’s) equationg(x + y) = g(x)g(y) which only has
continous solutions of the formg(x) = cx for any choice of a real constantc > 0,
or the zero functiong(x) ≡ 0.

Thus the solutions to the original equation aref(x) = cx − 1 for any choice of
a real constantc > 0, or the constant functionf(x) = −1. �

RELATED QUESTIONS

In slightly different, although closely related type of problems we are asked for
a specific valuef(a) of the function rather than finding the explicit formula for
f(x). The function in question is given in a similar form as in problems above.
The solving methods are more or less the same as those for solving functional
equations.

Example 25. (Hong Kong, 1996) Letf : R → R be a function such thatf(1) 6= 0

andf(x + y2) = f(x) + 2
(
f(y)

)2
for all x, y ∈ R . Find the value off(1996).

Solution. By takingx = y = 0 we find thatf(0) = 0. Takingx = 0 andy = 1

yeldsf(1) = f(0) + 2
(
f(1)

)2
, sof(1) =

1

2
.

Since f(2) = f(1 + 12) = f(1) + 2
(
f(1)

)2
and f(3) = f(2 + 12) =

f(2) + 2
(
f(1)

)2
= f(1) + 4

(
f(1)

)2
, we can guess thatf(n + 1) = f(1) +

2(n − 1)
(
f(1)

)2
=

1

2
+ 2(n − 1)

(1

2

)2
=

n

2
for all n ∈ N. This can be easily
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verified by induction.
Hencef(1996) = 998. �

Example 26. (Greece, 1997) Letf : R+ → R be a function satisfying following
conditions:

(1) f(x) is strictly increasing,

(2) f(x) > −1

x
and

(3) f(x)f
(
f(x) +

1

x

)
= 1 for all x ∈ R+.

Findf(1).

Solution. Let f(1) = a. Settingx = 1 in (3) we getaf(a + 1) = 1. Thusa 6= 0

andf(a + 1) =
1

a
.

Taking nowx = a + 1 in (3) yelds
1

a
f
(1

a
+

1

a + 1

)
= 1, which implies

thatf
(1

a
+

1

a + 1

)
= a = f(1). Sincef(x) is strictly increasing, we must have

1

a
+

1

a + 1
= 1. By solving this equation we geta =

1±
√

5

2
.

Suppose thata =
1 +

√
5

2
. Then1 < a = f(1) < f(a + 1) =

1

a
< 1. This

contracition implies thatf(1) = a =
1−

√
5

2
.

(One may note that a function with described condition really exists, for ex-

amplef(x) =
1−

√
5

2x
.) �

COLLECTION OF PROBLEMS

The problems below are the first set of problems for training in solving functional
equations. To each problem there is given a hint, but it is not necessary to follow
it in order to find the solution. There, as almost always, are many different ways
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to approach a mathematical problem. The suggested complet solutions are given
in the next section.

1. Find all solutionsf(x) of the equationxf(x) + 2xf(−x) = −1 wherex ∈ R
andx 6= 0.

(Hint: Create an additional equation.)

2. Find all functionsf(x) soving the equationf(x) + f
( 1

1− x

)
= x, where

x 6= 0 andx 6= 1.

(Hint: Create an additional equation.)

3. Solve the functional equation2f(tan x) + f(− tan x) = sin 2x, wheref(x)

are definded in the interval(−π

2
,
π

2
).

(Hint: Transformation of variable.)

4. (Poland, 1989) Determine all functionsf : R → R, such that for allx, y ∈ R,
(x− y)f(x + y)− (x + y)f(x− y) = 4xy(x2 − y2).

(Hint: Similar to Example 4.)

5. Find all polynomialsp(x) satisfying the relationp(x + 1) = p(x) + 2x + 1.

(Hint: Discover symmetry.)

6. (Sweden, 1995) Find all polynomialsp(x) which solve the following equation
for all x ∈ R: xp(x− 1) = (x− 26)p(x).

(Hint: The same method as in Example 8.)

7. Determine all continous functionsf : R → R such thatf(1) = 2 andf(xy) =
f(x)f(y)− f(x + y) + 1 for all x, y ∈ R.

(Hint: Find first the expression forf(x) for x ∈ Q.)

8. (Canada, 2002) Find all functionsf : N0 → N0 such thatxf(y) + yf(x) =
(x + y)f(x2 + y2) for all x, y ∈ N0.

(Hint: Try some values ofx and guess the solution. Then prove the correctness
of your guess.)
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9. (Asian-Pacific MO, 2002) Find all functionsf : R → R such thatf(x) = 0 has
only a finite number of roots andf(x4 + y) = x3f(x) + f

(
f(y)

)
for all x, y ∈ R.

(Hint: Show first thatf(x4) = x3f(x) for all x, y ∈ R. Prove then thatf(x) is
an odd function. What are the zeros off(x)?)

10. (UK, 1977) Letf : N → N0 satisfy

(a) f(mn) = f(m) + f(n), for all m,n ∈ N,
(b) f(n) = 0 whenever the units digit ofn (in base 10) is a ’3’, and
(c) f(10)=0.

Prove thatf(n) = 0 for all n ∈ N.

(Hint: Factorization.)

11. Find all functionsf(x, y) from the setQ+×Q+ of all pairsof positive rational
numbers(x, y) to the setQ+, which satisfy the following conditions:

(1) f(x, 1) = x for all x ∈ Q+,
(2) f(x, x) = 1 for all x ∈ Q+ and
(3) f(x, y) · f(z, t) = f(xz, yt) for all x, y, z, t ∈ Q+.

(Hint: No need for that. It’s a very easy problem.)

12. Determine all continous functionsf : R+ → R+ such thatf 2(x) = f(x +
y)f(x− y) for all x, y ∈ R.

(Hint: To get rid of the square, take logarithms on both sides.)

13. Find all functionsf : N → N which satisfy the equationf
(
f
(
f(n)

))
+

f
(
f(n)

)
+ f(n) = 3n, for all n ∈ N.

(Hint: Show first thatf(n) must be injective. What isf(1)?)

14. Find all real polynomialsp(x) satisfyingp(x2) + p(x)p(x + 1) = 0 for all
x ∈ R.

(Hint: Show that ifx0 is a zero of the polynomialp(x) then evenx2
0 is a zero of

this polynomial.)

15. (Sweden, 1962) Determine all functionsf : R → R such that for allx ∈ R
and allr ∈ Q the inequality|f(x)− f(r)| ≤ 7(x− r)2 is satisfied.
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(Hint: Find first the values odf(x) for rationalx. The triangle-inequality may
be useful.)

16. (Israel, 1995) Leta be a real number. Determine all functionsf : R+ → R+

such thatax2f
(1

x

)
+ f(x) =

x

x + 1
for all x ∈ R+.

(Hint: Put
1

x
instead ofx and symplify the equation. Consider several cases

depending ona.)

17. (Korea, 1999) Determine all functionsf : R → R such thatf
(x− 3

x + 1

)
+

f
(3 + x

1− x

)
= x for all x ∈ R, x 6= −1 andx 6= 1.

(Hint: Take firsty =
x− 3

x + 1
and theny =

3 + x

1− x
. This will give two equations

which are not difficult to solve.)

18. Find all functionsf : N → N such thatf
(
f(m) + f(n)

)
= m + n for all

m,n ∈ N.

(Hint: Show thatf(n is injective (one-to-one). Findf(1).)

19. (Poland, 1992) Determine all functionsf : Q+ → Q+ such thatf(x + 1) =

f(x) + 1 and f(x3) =
(
f(x)

)3
for all x ∈ Q+.

(Hint: Consider the rational numberx =
m

n
+ n2 for m, n ∈ N.)

20. (Belarus, 1995) Find all functionsf : R → R such thatf
(
f(x + y)

)
=

f(x + y) + f(x)f(y)− xy for all x, y ∈ R.

(Hint: This is a tricky one. One way of doing it is to try to get rid of the double
f on the left hand side. You may first puty = 0 and then replacex by x + y. Try
the same trick with the new equation, but withy = −1 this time.)

21. (IMO, 1982) The functionf(n) is defined on the positive integersN and takes
non-negative integer values. Moreoverf(2) = 0, f(3) > 0, f(9999) = 3333 and
for all m, n ∈ N: f(m + n)− f(m)− f(n) = 0 or 1. Determinef(1982).

(Hint: Since the conditionf(m+n)−f(m)−f(n) = 0 or1 is not easy to handle
we may try to replace it with a (weaker) conditionf(m+n) ≥ f(m)+f(n). Find
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f(3) and thenf(3n).)

22. Let f : N → N be a strictly increasing function satisfyingf(2) = 2 and
f(mn) = f(m)f(n) for all m, n ∈ N such that(m,n) = 1. (The notion(m, n)
means the greatest common divisor ofm andn. Thus,(m, n) = 1 means thatm
andn are coprime.)

Prove thatf(n) = n for all n ∈ N.

(Hint: Show that ifm is an odd integer andf(m) = m, thenf(2m) = 2m.
What isf(3)? Then, the indirect proof may be an effective method.)

23. (Chech Republic and Slovakia, 1993) Determine all functionsf : Z → Z
such thatf(−1) = f(1) and f(x) + f(y) = f(x + 2xy) + f(y − 2xy) for all
x, y ∈ Z.

(Hint: Find f(3) andf(5) in terms off(1). What pattern do you see? Show
then thatf(n) is even. What can you find about the valuef(mn) for oddm?)

24. (IMO, 1977) The functionf(x) is defined on the set of positive integers and
its values are positive integers. Given thatf(n+1) > f(f(n)) for all n, prove that
f(n) = n for all n ∈ N.

(Hint: Since we are given an inequality, it may turn out to be smart to stick to
the inequalities and work on showing thatf(n) ≥ n andf(n) ≤ n. Consider as
well proving the following statement: Ifm ≥ n thenf(m) ≥ n. This may be done
by induction.)

25. Solve the same problem as in Example 19, but without the assumption that
f(x) must be continous.

(Hint: After beginning as in Example 19, show thatf(x + y) = f(x) + f(y)
for non-constant solutionf(x). Prove then thatf(x) = x for all x ∈ Q+ and find
then a way to extend the result to allx ∈ R+.)

26. (IMO, 2002) Find all functionsf : R → R such that(
f(x) + f(y)

)(
(f(u) + f(v)

)
= f(xu− yv) + f(xv + yu) for all x, y, u, v ∈ R.

(Hint: Findf(x) for rationalx and then try to extend the result tox ∈ R. Since
in the problem nothing is said about the continuity off(x), so you cannot use the
standard argument. Instead you may find it useful to prove thatf(x) is even and
monotone forx ≥ 0.)
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SOLUTIONS TO THE PROBLEMS OF THE COLLECTION

1. First we note thatx = 0 must be excluded from the domain off(X). Substitu-
ting x by−x yelds −xf(−x)− 2xf(x) = −1. Adding this equation twice to the

original equation gives−3xf(x) = −3. Hence f(x) =
1

x
. It remains to verify

that this function satisfy the given equation.

2. Replacingx by
1

1− x
yelds the equqtionf

( 1

1− x

)
+ f

(x− 1

x

)
=

1

1− x
.

Replacingx again by
1

1− x
givesf

(x− 1

x

)
+ f(x) =

x− 1

x
. Subtracting from

this equation the previous one and adding the original equation yields2f(x) =
−x3 + x− 1

x(1− x)
. Thus f(x) =

x3 − x + 1

2x(x− 1)
and it is easy to verify that this function

satisfy the original equation.

3. Let y = tan x. Then sin 2x =
2y

y2 + 1
and the equation can be written as

2f(y) + f(−y) =
2y

y2 + 1
.

Replacing nowy with −y gives a new equation2f(−y) + f(y) = − 2y

y2 + 1
.

If we now from this equation twice substract the first equation we get−3f(y) =

− 6y

y2 + 1
, i.e.f(y) =

2y

y2 + 1
. Thus,f(x) =

2x

x2 + 1
, and what remains is to check

that this function satisfies the original equation.

4. Let u = x + y andv = x − y. Then the equation can be written asvf(u) −

uf(v) = uv(u2 − v2). Foru 6= 0 andv 6= 0 this can be written as
f(u)

u
− u2 =

f(v)

v
− v2.

Since this relation holds for arbitrary non-zerou, v ∈ R then
f(u)

u
− u2 is

constant. Thus,
f(u)

u
− u2 = c, i.e.f(x) = x3 + cx.

Observe that from the relationvf(u)−uf(v) = uv(u2−v2) follows (by taking
u = 0, v 6= 0) thatf(0) = 0. Since for each functionf(x) = x3 + cx we have also
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f(0) = 0 then, if the original equation has a solution, it must bef(x) = x3 + cx

for any real constantc. Thus it only remains to check that this functions satisfy the
given equation.

5. The equation can be written asp(x + 1)− (x + 1)2 = p(x)− x2, or, by letting
q(x) = p(x) − x2, as q(x + 1) = q(x). By induction one can show now that
q(x + n) = q(x) for all n ∈ Z.

If we let h(x) = q(x) − q(o), then it follows thath(n) = 0 for all n ∈ Z.
Sinceh(x) is a polynomial thenh(x) ≡ 0 andq(x) is a constant polynomial. This
implies thatp(x) = x2 + c, for any choice of a real constantc.

Substitutingp(x) in the original equation verifies that this family of polynomi-
als satisfy the equation.

6. First one should find out thatp(0) = 0 (by takingx = 0) and then thatp(k −

1) = 0 impliesp(k) = 0 for k = 1, 2, ..., 25. Hencep(x) =
25∏

k=0

(x− k) · q(x), for

some polynomialq(x). Letting this expression forp(x) into the original equaition

yeldsx

25∏
k=0

(x− 1− k) · q(x− 1) = (x− 26)
25∏

k=0

(x− k) · q(x).

It follows that for x > 26 we haveq(x − 1) = q(x), and then, by the same

argument as in Example 8,q(x) = constant. Finally p(x) = c

25∏
k=0

(x− k), for any

choice of the real constantc. It is easy to check that these polynomials satisfy the
original equation.

7. In order to simplify the calculation let’s introduce a new functiong(x) =
f(x)− 1. (This is a smart substitution allowing us to get rid of the constant−1 in
the relation given in the problem). Replacing thenf(x) by g(x) + 1 in the relation
gives (?) : g(xy) + g(x + y) = g(x)g(y) + g(x) + g(y) andg(1) = 1.

Insertingy = 1 in (?) yeldsg(x) + g(x + 1) = g(x)g(1) + g(x) + g(1), i.e.
g(x + 1) = g(x) + 1. Thus, forx = 0 we haveg(1) = g(0) + 1, which means that
g(0) = 0. Moreover, takingx = −1 we getg(0) = g(−1 + 1) = g(−1) + 1, i.e.
g(−1) = −1.

By the induction we can now generalize the relationg(x + 1) = g(x) + 1 to
g(x + n) = g(x) + n for all n ∈ Z. Then it follows thatg(n) = g(0 + n) =
g(0) + n = n for all n ∈ Z.

28



If we put x = n andy =
1

n
(for 0 6= n ∈ Z) in the relation(?) theng

(n

n

)
+

g
(
n+

1

n

)
= g(n)g

(1

n

)
+g(n)+g

(1

n

)
. Sinceg(n) = n andg

(
n+

1

n

)
= n+g

(1

n

)
,

then we have1 + n + g
(1

n

)
= ng

(1

n

)
+ n + g

(1

n

)
, which implies thatg

(1

n

)
=

1

n
.

Let nowm ∈ Z andn ∈ N. Takingx = m andy =
1

n
in the relation(?) gives

g
(m

n

)
+g

(
m+

1

n

)
= g(m)g

(1

n

)
+g(m)+g

(1

n

)
. This reduces tog

(m

n

)
+g(m)+

g
(1

n

)
= g(m)g

(1

n

)
+ g(m) + g

(1

n

)
, and further tog

(m

n

)
=

m

n
.

Thus we have showed thatg(x) = x for all x ∈ Q. Using the same continuity
argument as in Example 9 we find thatg(x) = x for all x ∈ R. Hencef(x) = x+1
and one should now verify that this function satisfy the relation in question.

8. Takingy = 0 yeldsxf(0) = xf(x2) for all x ∈ N0, i.e. f(x2) = f(0). This
may suggest thatf(x) is a constant function. Moreover, it is clear that all constant
functions satisfy the given equation.

Supposea, b ∈ N andf(a) < f(b). Then(a + b)f(a) = af(a) + bf(a) <

af(b) + bf(a) < af(b) + bf(b) < (a + b)f(b). Since the middle term in the last
expression equals(a+b)f(a2+b2), then we have(a+b)f(a) < (a+b)f(a2+b2) <

(a + b)f(b), i.e. f(a) < f(a2 + b2) < f(b) for all a, b ∈ N.
We can then repeat the same argument with the samea and b1 = a2 + b2

gettingf(a) < f(a2 + b2
1) < f(b1) = f(a2 + b2) < f(b). Doing the same with

b2 = a2 + b2
1 we get an infinite number of different valuesf(b1), f(b2), f(b3), ...,

all of them betweenf(a) andf(b). Since this is imposible then, for alla, b ∈ N,
f(a) = f(b). Especiallyf(a) = f(1) for all a ∈ N.

Sincef(1) = f(12) = f(0) then we finally havef(x) = f(0) for all x ∈ N0.

9. Taking x = 1 andy = 0 yeldsf
(
f(0)

)
= 0. Taking insteadx = 0 yelds

f(y) = f
(
f(y)

)
for all y ∈ R. Hencef(0) = 0.

By taking nowy = 0 we getf(x4) = x3f(x). Forx 6= 0 we have thenf(−x) =
1

(−x)3 (−x)3f(−x) = − 1

x3f
(
(−x)4) = − 1

x3f(x4) = − 1

x3x
3f(x) = −f(x).

Hencef(x) is an odd function.
Suppose thatf(1) = 0. Then we would havef(2) = f(1 + 1) = f(14 + 1) =

13f(1) + f
(
f(1)

)
= 0, and, by induction,f(n + 1) = f(14 + n) = 13f(1) +

f
(
f(n)

)
= 0 for all n ∈ N. This however cannot be the case sincef(x) only have
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a finite numbers of zeros. Hencef(1) = c for some non-zero real constantc.
Puttning nowy = c in the expressionf(y) = f

(
f(y)

)
yeldsf(c) = f

(
f(c)

)
=

f(1) = c.
Suppose now thatx0 is a zero off(x), x0 6= 0. Thenx0 6= 1 as well and, using

the expressionf(x4) = x3f(x), we getf(x4
0) = x3

0f(x0) = 0. That would give
us an infinite number of zeros off(x), namelyx4n

0 for all n ∈ N. which is not
possible. Thusf(x0) 6= 0 for all x0 6= 0.

For any givenx ∈ R, let z = f(x4)− x4. Then we getf(x4) = f(x4 + z) =
x3f(x) + f

(
f(z)

)
. At the same timef(x4) = x3f(x) according to one of the

expressions above. Hencef
(
f(z)

)
= 0, which implies thatf(z) = 0 and then

z = 0.
From the last argument follows thatf(x) = x for all non-negative real num-

bers. But sincef(x) is an odd function then, forx > 0, we havef(−x) =
−f(x) = −x. Thusf(x) = x for all x ∈ R. It is now easy to check that this
function really satisfies the conditions of the problem.

10. By easy induction one can show thatf
( k∏

i=1

ai

)
=

k∑
i=1

f(ai). Now, we have

0 = f(10) = f(2 · 5) = f(2) + f(5), and sincef(2), f(5) ≥ 0 then,f(2) =
f(5) = 0.

In n ∈ N then we can factorize all 2’s and 5’s and writen = 2s · 5t · m,
where the last (units) digit ofm is 1, 3, 7 or 9. Hence,f(n) = f(2s · 5t · m) =
sf(2) + tf(5) + f(m) = f(m).

What remains is to find out what isf(m) when the last digit ofm is 1, 7 or 9.
Suppose the last digit ofm is 1, i.e.m = 10k + 1. Now we can use the second
condition of the problem. We have0 = f(3m) = f(3) + f(m) = f(m).

Similarily, if m = 10k + 7 then0 = f(9m) = f(3) + f(3) + f(m) = f(m),
and ifm = 10k + 9 then0 = f(3m) = f(3) + f(m) = f(m) (since the last digit
of 3m is 7).

Thusf(n) = 0 for all n ∈ N.

11. This is an easy problem and the solution may be like the following argument:

f(1, y) · y (1)
= f(1, y) · f(y, 1)

(3)
= f(y, y)

(2)
= 1. Thusf(1, y) =

1

y
.

Now, x · 1

y
= x · f(1, y)

(1)
= f(x, 1) · f(1, y)

(3)
= f(x, y). Hence,f(x, y) =

x

y
.

It is obvious that this function satisfies given conditions.
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12. Sincef(x) > 0, it’s safe to take logarithms on both sides. This yelds2 ln
(
f(x)

)
=

ln
(
f(x+ y)

)
+ln

(
f(x− y)

)
. The next step is obvious: introduce a new function:

g(x) = ln
(
f(x)

)
. The equation transforms to2g(x) = g(x + y) + g(x− y).

In order to solve the new equation, takey = x. This gives2g(x) = g(2x)+g(0),
i.e. g(2x) = 2g(x) − g(0). Now, since2g(2x) = g(2x + x) + g(2x − x), then
g(3x) = 2g(2x)− g(x) = 2

(
2g(x)− g(0)

)
− g(x) = 3g(x)− 2g(0).

At this stage we may guess thatg(nx) = ng(x) − (n − 1)g(0) for all n ∈ N,
and we may prove this by induction.

Take now a positive rational numberx =
m

n
, with n ∈ N. This means that

m = nx and thus,g(m) = g(nx) = ng(x) − (n − 1)g(0). On the other hand
g(m) = g(m · 1) = mg(1)− (m− 1)g(0).

From the last two equalities we deduce thatng(x) − (n − 1)g(0) = mg(1) −
(m − 1)g(0), i.e. ng(x) = (n − m)g(0) + mg(1). Dividing both sides byn and

keeping in mind thatx =
m

n
, we getg(x) = (1− x)g(0) + xg(1), which may be

written asg(x) =
(
g(1) − g(0)

)
x + g(0). Lettingg(1) − g(0) = a andg(0) = b

we get finallyg(x) = ax + b.
The continuity ofg(x) (logarithm andf(x) are continous) allow us to extend

the result in the usual way to allx ∈ R+. Thus,f(x) = eg(x) = eax+b for any
choice of real constantsa andb.

What remains to do is to check that so obtained function satisfies the given
equation.

13. It is obvious that the identity functionf(n) = n satisfies the given equation.
We may suspect that there are no other functions than that.

First we observe thatf(n) is injective. For supposef(n) = f(m). Then ob-

viously f
(
f(n)

)
= f

(
f(m)

)
and consequentlyf

(
f
(
f(n)

))
= f

(
f
(
f(m)

))
.

Thus,f
(
f
(
f(n)

))
+ f

(
f(n)

)
+ f(n) = f

(
f
(
f(m)

))
+ f

(
f(m)

)
+ f(m), i.e.

3n = 3m andn = m.
For n = 1 we getf

(
f
(
f(1)

))
+ f

(
f(1)

)
+ f(1) = 3, which can only mean

thatf(1) = 1. Hencef(2) ≥ 2, f(3) ≥ 3, and so on.
Suppose now thatk is the least number such thatf(k) > k. Then, since

f
(
f(k)

)
≥ f(k), we would havef

(
f(k)

)
≥ f(k) > k. Similarily we would

havef
(
f
(
f(k)

))
≥ f

(
f(k)

)
> k. This together would give usf

(
f
(
f(k)

))
+

f
(
f(k)

)
+ f(k) > 3k which contradicts the equation.
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Hencef(k) = k for all k ∈ N

14. If the polynomialp(x) is constant,p(x) ≡ c, then, inserting it into the equation
givesc = 0 or c = −1. Both of this polynomials are apparently solutions to the
equation. So let us now assume thatp(x) is not constant.

Supposex0 is a zero ofp(x). Putting x0 into the equation yieldsp(x2
0) +

p(x0)p(x0 + 1) = 0, i.e. p(x2
0) = 0. Thusx2

0 is a zero ofp(x) as well. This ar-
gument can be repeated and, by induction, one shows thatx2n

0 are zeros ofp(x)
for all n ∈ N. Since the polynomialp(x) has only a finite number of zeros thenx0

can only equals0, 1 or−1.
Letting nowx0−1 into the equation yieldsp

(
(x0−1)2)+p(x0−1)p(x0) = 0,

i.e.p
(
(x0−1)2) = 0. This means that(x0−1)2 is again a zero ofp(x). In the view

of the above discussion(x0 − 1)2 equals0, 1 or−1. Hence,x0 can only equals0
or 1 and thenp(x) = cxn(x− 1)m for somec ∈ R andm,n ∈ N. If c = 0, we get
the zero polynomialp(x) ≡ 0 already considered. Suppose then thatc 6= 0

Inserting this expression into the equation givescx2n(x2− 1)m + cxn(x− 1)m ·
c(x + 1)nxm = 0, which reduces toxn−m(x + 1)m−n + c = 0 for all x. Then
apparentlym = n andc = −1. Hencep(x) = −xn(x− 1)n for all n ∈ N.

One must now only check that these functions really satisfy the given equation.
Thus the answer isp(x) ≡ 0 or p(x) ≡ −1 or p(x) = −xn(x− 1)n for all n ∈ N.

15. Supposer, s ∈ Q such thatr < s, and letn be a positive integer. Let divide

the segment[r, s] in n equal parts byri = r +
s− r

n
· i, for i = 0, 1, 2, ..., n. Each

part has the length|ri − ri+1| =
s− r

n
.

Then |f(r) − f(s)| =
∣∣∣ n−1∑

i=0

(
f(ri) − f(ri+1)

)∣∣∣. Using now the triangle in-

equality we get|f(r) − f(s)| ≤
n−1∑
i=0

∣∣∣f(ri) − f(ri+1)
∣∣∣ ≤ 7

n−1∑
i=0

(
ri − ri+1

)2
=

7
n−1∑
i=0

(s− r

n

)2
=

7(r − s)2

n
.

Letting nown → ∞ we find out that the right hand side goes to0 and so
f(r) − f(s) = 0, i.e. f(r) = f(s) for all r, s ∈ Q. Hencef(x) is a constant
function onQ, f(x) = c for some real constantc and allx ∈ Q.

Now we can turn to the real numbersx. If then x ∈ R wa may consider a
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sequence of rational numbers{rn} ⊂ Q, such thatlim
n→∞

rn = x. We may in fact

choose{rn} so that|x− rn| < 10−n for all n ∈ N. Thus

|f(x)− c| = |f(x)− f(rn)| ≤ 7(x− rn)
2 <

7

102n
.

Since the right-hand side can be made as small as needed, we conclude that
f(x)− c = 0. Hencef(x) = c for all x ∈ R. It is also easy to see that the constant
function really satisfy the given equation.

16. Taking
1

x
instead ofx yelds a

1

x2f(x)+f
(1

x

)
=

1

x + 1
. Eliminating nowf

(1

x

)
from this equation and the original one reduces to(1− a2)f(x) =

x(1− ax)

x + 1
.

Consider now several cases depending on the constanta:

(1) If a = −1 or a = 1, then we have0 =
x(1− ax)

x + 1
for all x > 0. This is

clearly impossible, hence there is no solution in this case.

(2) If a > 1, thenf(x) =
1

1− a2 ·
x(1− ax)

x + 1
. Taking thenx = 1

2a we will get

f
( 1

2a

)
< 0, which contradicts the condition onf(x) (f(x) is positive valued).

(3) If a < −1, then againf(x) =
1

1− a2 ·
x(1− ax)

x + 1
andf(x) < 0 for all

x > 0. Hence a contradiction.

(4) If 0 < a < 1, then, sincef(x) =
1

1− a2 ·
x(1− ax)

x + 1
, we havef(x) < 0

for all x > 1
a. Again a contradiction.

(5) If −1 < a < 0, thenf(x) =
1

1− a2 ·
x(1− ax)

x + 1
and this is> 0 for all

positive real numbersx.
It remains to verify that this function (only for−1 < a < 0) satisfy the given

equation.

17. Takingy =
x− 3

x + 1
yeldsx =

3 + y

1− y
and the equationf(y) + f

(y − 3

y + 1

)
=

3 + y

1− y
. If we instead takey =

3 + x

1− x
thenx =

y − 3

y + 1
and we get another equation:

f
(3 + y

1− y

)
+ f(y) =

y − 3

y + 1
.

Adding now both equations together we get2f(y)+f
(y − 3

y + 1

)
+f

(3 + y

1− y

)
=
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3 + y

1− y
+

y − 3

y + 1
=

8y

1− y2 . On the other hand we know from the original functional

equation thatf
(y − 3

y + 1

)
+ f

(3 + y

1− y

)
= y. Hence2f(y) + y =

8y

1− y2 . Finally

f(y) =
4y

1− y2 −
y

2
=

y3 + 7y

2(1− y2)
.

It remains to verify that this function really satisfy the given equation.

18. Supposef(m) = f(n). Then we havef(m) + f(n) = f(n) + f(n). Taking
f on both sides of last equality gives, according to the relation the functionf

satisfies,m + n = f
(
f(m) + f(n)

)
= f

(
f(n) + f(n)

)
= n + n. Hencem = n

and we can conclude thatf(n) is injective.
In order to find the valuef(1) supposef(1) = c > 1. Then2 = f

(
f(1) +

f(1)
)

= f(2c). Thusf(2+ c) = f
(
f(2c)+f(1)

)
= 2c+1. It is then obvious that

c cannot equals 2: puttingc = 2 into the last two equalities would givef(4) = 2
andf(4) = 5. Hencec > 2.

Consider now the numbersf(2c)+f(1) andf(c+2)+f(c−1). Applyingf to
those two numbers yieldsf

(
f(2c)+f(1)

)
= 2c+1 andf

(
f(c+2)+f(c−1)

)
=

c+2+c−1 = 2c+1. Sincef(n) is injective thenf(2c)+f(1) = f(c+2)+f(c−1),
which means that2 + c = 1 + 2c + f(c− 1), i.e.f(c− 1) = 1− c < 0. Since this
is impossible then the laternativec > 2 must be rejected and we havec = 1.

Now we claim thatf(n) = n for all n ∈ N. We know it is true forn = 1. So
suppose it is true for somen0 ∈ N. Thenn0 + 1 = f

(
f(n0) + f(1)

)
= f(n0 + 1).

Hence, by the induction,f(n) = n for all n ∈ N.

19. By easy induction one may extend the conditionf(x + 1) = f(x) + 1 to
f(x + n) = f(x) + n for all n ∈ N.

Consider now the positive rational numberx =
m

n
+ n2, for anym,n ∈ N.

From the second condition of the problem and using the new condition above

we get f
((m

n
+ n2)3

)
=

(
f
(m

n
+ n2))3

=
(
f
(m

n

)
+ n2

)3
=

(
f
(m

n

))3
+

3
(
f
(m

n

))2
n2 + 3f

(m

n

)
n4 + n6.

On the other handf
((m

n
+n2)3

)
= f

((m

n

)3
+3

(m

n

)2
n2 +3

(m

n

)
n4 +n6

)
=

f
((m

n

)3
+ 3m2 + 3mn3 + n6

)
= f

((m

n

)3
)

+ 3m2 + 3mn3 + n6 =
(
f
(m

n

))3
+
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3m2 + 3mn3 + n6.

Equating both right-hand sides gives
(
f
(m

n

))3
+3

(
f
(m

n

))2
n2 +3f

(m

n

)
n4 +

n6 =
(
f
(m

n

))3
+ 3m2 + 3mn3 + n6, i.e.

(
f
(m

n

))2
n2 + f

(m

n

)
n4 = m2 + mn3.

Now, it is only to discover thet the last expression can be factorised as0 =(
f
(m

n

))2
n2 + f

(m

n

)
n4 −m2 −mn3 =

(
f
(m

n

)
n−m

)(
f
(m

n

)
n + m + n3

)
.

Since the last parenthesis is never0, thenf
(m

n

)
n −m = 0, which means that

f
(m

n

)
=

m

n
.

It is not difficult that the functionf(x) = x satisfies the original equation.

20. It is obvious thet the functionf(x) is not constant. The doublef of the left
hand side complicates the problem considerably. To get rid of that we may first
takey = 0 (gettingf

(
f(x)

)
= f(x) + f(x)f(0)) and then replacex by x +

y, which results in a new equationf
(
f(x + y)

)
= f(x + y) + f(x + y)f(0).

Equating the right-hand sides of this equation and the original one we getf(x +
y)+f(x)f(y)−xy = f(x+y)+f(x+y)f(0), orf(0)f(x+y) = f(x)f(y)−xy

(?).
Let’s now try to puty = 1 into (?). This will result in f(0)f(x + 1) =

f(x)f(1) − x (??). From the last expression we would like to eliminate the
f(x + 1) term. In order to do that puty = −1 in (?) (gettingf(0)f(x − 1) =
f(x)f(−1) + x) and replace thenx by x + 1. This givesf(0)f(x) = f(x +
1)f(−1)+x+1, which multiplied byf(0) is f 2(0)f(x) = f(0)f(x+1)f(−1)+
f(0)(x + 1). Now we can substitute heref(0)f(x + 1) by the expression in

(??): f 2(0)f(x) =
(
f(x)f(1) − x

)
f(−1) + f(0)(x + 1). Hence

(
f 2(0) −

f(1)f(−1)
)
f(x) =

(
f(0)− f(−1)

)
x + f(0) (? ? ?).

There are now two cases to consider: the coefficient on the left hand side equals
0 or not.

Supposef 2(0) − f(1)f(−1) = 0. Then puttingx = 0 in (? ? ?) results in
f(0) = 0. Hence,f(1)f(−1) = 0. At the same time the equalityf(0) = 0 turn (?)
into f(x)f(y) = xy. Takingx = 1 andy = −1 we getf(1)f(−1) = −1, which
contradicts the previous result.

Suppose finally thatf 2(0) − f(1)f(−1) 6= 0. Then the expression (? ? ?) im-
plies thatf(x) is a polynomial of degree one,f(x) = ax + b. Substituting this
polynomial into the original equation we geta

(
a(x + y) + b

)
+ b = a(x + y) +
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b + (ax + b)(ay + b)− xy. Since this is valid for allx, y ∈ R the by taking some
values forx andy it is easy now to show thata = 1 andb = 0. Thus, the only
solution to the equation isf(x) = x.

21. Since the conditionf(m + n)− f(m)− f(n) = 0 or 1 is not easy to handle
we may try to replace it with a (weaker) conditionf(m + n) ≥ f(m) + f(n). So
let’s see how far do we get.

We begin with findingf(1): 0 = f(2) = f(1 + 1) ≥ f(1) + f(1) = 2f(1).
Sincef(1) ≥ 0 the we havef(1) = 0.

Now, f(3) = f(2 + 1) = f(2) + f(1) + a = a, wherea equals 0 or 1. Since
we know thatf(3) > 0 then, of course,f(3) = 1

Next we may note thatf(2 · 3) = f(3 + 3) ≥ f(3) + f(3) = 2, f(3 · 3) =
f(2 · 3 + 3) ≥ f(2 · 3) + f(3) ≥ 3, and generally, by induction, thatf(3 · n) ≥ n.

Moreover, if we for somek getf(3k) > k, then the same argument shows that
f(3m) > m for all m > k. But we know thatf(9999) = f(3 · 3333) = 3333,
hencef(3n) = n for all n upp to at least 3333.

Now, 1982 = f(3 · 1982) = f(2 · 1982 + 1982) ≥ f(2 · 1982) + f(1982) =
f(1982 + 1982) + f(1982) ≥ 3f(1982), implying thatf(1982) ≤ 660. On the
other hand,f(1982) = f(1980 + 2) ≥ f(1980) + f(2) = f(3 · 660) = 660. Thus,
f(1982) = 660.

22. It is obvious thatf(1) = 1. If m is an odd integer then(m, 2) = 1 and we
havef(2m) = f(2)f(m) = 2f(m). Hence, ifm is an odd integer andf(m) = m,
thenf(2m) = 2m.

Let’s try to find the value off(3). There are many ways of doing this, for
example through the following, rather artificial, reasoning (remember thatf(x) is
strictly increasing):

2f(7) = f(2)f(7) < f(3)f(7) = f(21) < f(22) = f(2)f(11) = 2f(12) <

2f(14) = 2f(2)f(7) = 4f(7). Thus,2f(7) < f(3)f(7) < 4f(7), giving 2 <

f(3) < 4, i.e.f(3) = 3.
Suppose now there are some positive integersn for which f(n) 6= n. Let then

n0 be the smallest among them. We have, of course,n0 > 3 and for alln such that
1 ≤ n < n0, f(n) = n.

From this it follows thatf(n0) > n0 and morover, sincef(x) is strictly increa-
sing,f(n) > n for all n ≥ n0 (?).

Let now then consider two cases:
(1) If n0 is odd then(2, n0 − 2) = 1 and so2(n0 − 2) = f(2)f(n0 − 2) =
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f
(
2(n0 − 2)

)
. However, forn0 > 3, 2(n0 − 2) ≥ n0 and so, according to (?),

f
(
2(n0 − 2)

)
> 2(n0 − 2), giving 2(n0 − 2) > 2(n0 − 2), thus a contradiction.

(2) If n0 is even then(2, n0 − 1) = 1 and so2(n0 − 1) = f(2)f(n0 − 1) =
f
(
2(n0−1)

)
. Again, forn0 > 3, 2(n0−1) ≥ n0 and sof

(
2(n0−1)

)
> 2(n0−1),

giving 2(n0 − 1) > 2(n0 − 1), a contradiction.
In conclusion, suchn0 doesn’t exist and hencef(n) = n for all n ∈ N.

23. Let’s try some values ofx andy. Takingx = y = 1 yields f(1) + f(1) =
f(3) + f(−1), but sincef(−1) = f(1) thenf(3) = f(1).

Taking nowx = 1 andy = 2 givesf(1) + f(2) = f(5) + f(−2), but if we
takex = 2 andy = −1 thenf(2) + f(−1) = f(−2) + f(3). From the two last
expression we find thatf(5) = f(3).

Since thenf(1) = f(3) = f(5) we may suspect thatf(n) has the same value
for all odd integers.

This is in fact correct and in order to prove it just take firstx = 1 andy = m

(giving f(1) + f(m) = f(1 + 2m) + f(−m)) and thenx = m andy = −1 (so
we getf(m) + f(−1) = f(−m) + f(−1 + 2m). From the two last expression we
find thatf(2m− 1) = f(2m + 1) for all m ∈ Z.

Another consequence of the equationf(1) + f(m) = f(1 + 2m) + f(−m)) is
now thatf(m) = f(−m). Since thenf(x) ie an even function, it is suficcient to
find the expression forf(x) for non-negative integersx.

Let nowx = n andy = −(2k + 1). Then our equation impliesf(n) + f
(
−

(2k + 1)
)

= f
(
− n(1 + 4k)

)
+ f

(
− (2k + 1)(1− 2n)

)
, which, after cancelling

f(m) for odd m, means thatf(n) = f
(
− n(1 + 4k)

)
= f

(
(1 + 4k)n

)
. If we

instead takex = −(2k + 1) andy = n then f
(
− (2k + 1)

)
+ f(n) = f

(
− (2k +

1)(1 + 2n)
)
+ f

(
n(4k + 3)

)
, i.e. f(n) = f

(
(4k + 3)n

)
. Thusf(n) = f(mn) for

any odd inegerm.
Every positive integern can be written in formn = 2am for some non-negative

integera and an odd integerm. Hencef(n) = f
(
2am

)
= f

(
2a

)
. Thus any

function with of the kind we are looking for is determined by the valuesf(0),
f(1), f(2), f

(
22), f

(
23), f

(
24) and so on, which may all be chosen arbitrary. All

other values are given byf(n) = f
(
2a

)
as above. For negative integersk we have

thatf(k) = f(−k).
Finally let’s check that such functions satisfy the equations. Clearlyf(−1) =

f(1). If x = 0 or y = 0 then the equation becomes an identity. So suppose thatx =
2am andy = 2bn for some non-negative integersa andb and oddm, n. Then the
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left-hand side of the equation becomesf(2am) + f(2bn) = f(2a) + f(2b), while
the right-hand side becomesf

(
2am(1+2y)

)
+ f

(
2bn(1− 2x)

)
= f(2a)+ f(2b),

since bothm(1 + 2y) andn(1− 2x) are odd.
Thus the solution is complete.

24. Sincef : N → N, it ishould be clear thatf(1) > 1. Moreover,f(2) >

f(f(1)) ≥ 1, which implies thatf(2) ≥ 2. The same argument cannot however
be extended for showing thatf(3) ≥ 3.

Nevertheless it is possible to prove slightly stronger statement, from which the
inequalityf(n) ≥ n follows immediately.

Statement: Ifm ≥ n thenf(m) ≥ n.
This statement is obviously true forn = 1 sincef(m) ≥ 1 by the definition of

f(m). So let us assume that the statement is true for somen0 ≥ 1, i.e. assume that
If m ≥ n0 thenf(m) ≥ n0.

Now, suppose thatm ≥ n0+1. hence,m−1 ≥ n0 and then, by the assumption,
f(m− 1) ≥ n0. By the assumption again,f

(
f(m− 1)

)
≥ n0. Using the property

of f(m) in the statment of the problem, we know thatf(m) > f
(
f(m − 1)

)
.

Hence f(m) > f
(
f(m − 1)

)
≥ n0. This means thatf(m) ≥ n0 + 1 and, by

induction, the statment is true for alln ∈ N.
As a special case, we havef(n) ≥ n for all n ∈ N. From this it follows that

f(n + 1) > f(f(n)) ≥ f(n), proving that the functionf(n) is strictly increasing.
Finally, suppose thatf(n) 6= n for somen ∈ N. Then, of course,f(n) > n and

we getf(n) ≥ n + 1. This implies thatf(n + 1) > f(f(n)) ≥ f(n + 1), which
is impossible.

Therefore,f(n) = n for all n ∈ N.

25. As in the solution of Example 19, we discover that the constant function
f0(x) ≡ 1 is a solution to the equation, and then that for non-constant solution
f(x) we havef(xy) = f(x)f(y) for all x, y ∈ R+.

Now we find thatf(a)f(x+y) = f
(
ax+y

)
= f

(
axay

)
= (by the previous equa-

lity) = f
(
ax

)
f
(
ay

)
= f(a)f(x)f(a)f(y) = f(a)f(x)+f(y), from which follows that

f(x + y) = f(x) + f(y) for all x, y ∈ R+.
By the same methods as in Example 9 one can show now thatf(x) = xf(1)

for all x ∈ Q+. At the same time, settingx = y = 1 into the equationf(xy) =
f(x)f(y), we getf(1) = 1, and thusf(x) = x for all x ∈ Q+. What then remains
is to extend this formula to allx ∈ R+.
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Suppose that for somex > 0 we havef(x) < x (in the casef(x) > x the
argument is similar). Let’s pick up a rational numbera such thatf(x) < a < x.
Then we will havef(x) = f

(
a + (x− a)

)
= f(a) + f(x− a) > f(a) = a, which

contradicts the choice ofa. Hencef(x) ≡ 1 andf(x) = x are the only solutions
to the problem.

26. By letting x = y = 0 andu = v, we get4f(0)f(u) = 2f(0). So either
f(u) = 1/2 for all u ∈ R, or f(0) = 0. The constant functionf(u) = 1/2 is
certainly a solution. Hence assume thatf(0) = 0.

Puttingy = v = 0 we getf(x)f(u) = f(xu) (?). In particular, takingx = u =
1, we havef(1)2 = f(1). Hencef(1) = 0 or f(1) = 1. Suppose thatf(1) = 0.
By takingx = y = 1 andv = 0, we get0 = 2f(u). Thusf(x) = 0 for all u ∈ R.
That is certainly a solution as well. We can thus assume thatf(1) = 1.

Settingx = 0 andu = v = 1, we get2f(y) = f(y) + f(−y), which reduces
to f(−y) = f(y). This means thatf(x) is an even function and so we need only
considerf(x) for positivex.

Next we show thatf(r) = r2 for all r ∈ Q. The first step is to show that
f(n) = n2 for all n ∈ N. This is done by the induction onn. It is obviously true
for n = 0 and 1. Suppose it is true forn − 1 andn. Then lettingx = n and
y = u = v = 1 into the equation, we get2f(n)+2 = f(n−1)+ f(n+1). Hence
f(n + 1) = 2n2 + 2− (n− 1)2 = (n + 1)2. Hence the statment is true forn + 1.

Now the relation (?) implies thatf(n)f
(m

n

)
= f(m), sof

(m

n

)
=

m2

n2 for all

m,n ∈ N. Hence we have established thatf(r) = r2 for all r ∈ Q+. By the fact
thatf(x) is even,f(r) = r2 for all r ∈ Q.

Now it is natural to suspect thatf(x) = x2 for all x ∈ R, so this is what we
should try to prove in the final step. Since we don’t have the condition thatf(x) is
continous, we cannot make use of the standard procedure for those cases.

From the relation (?) above, we havef(x2) = f(x)2 ≥ 0, sof(x2) is always
non-negative. Hencef(x) ≥ 0 for positivex and, again by the fact thatf(x) is
even,f(x) ≥ 0 for all x ∈ R.

Putting nowu = y and v = x, we get
(
f(x) + f(y)

)2
= f(x2 + y2), so

f
(
x2 + y2) = f(x)2 +2f(x)f(y)+f(y)2 ≥ f(x)2 = f(x2). For anyu andv such

thatu > v > 0, we may putv = x2 andu = x2 + y2, and hencef(u) ≥ f(v). In
other words,f(x) is an increasing function.

Thus for any realx we may take a sequence of rationalsrn, all less thanx, that
converge tox and another sequence of rationalssn, all greater thanx, which also
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converge tox. Then we getr2
n = f(rn) ≤ f(x) ≤ f(sn) = s2

n for all x ∈ R and
hencef(x) = x2.

The final answer is then: there are three possible functions solutions, namely

f(x) = 0 for all x ∈ R, f(x) =
1

2
for all x ∈ R or f(x) = x2.

ADDITIONAL PROBLEMS

Here follows some more problems, this time without solutions offered. Instead,
after the problems there are some hints and answers.

Problems.

27. (Poland, 1992) Find all functionsf : R → R such thatf(x+y)−f(x−y) =
f(x)f(y) for all x, y ∈ R.

28. Find all functions that satisfy the equationf(1− x) + xf(x− 1) =
1

x
for all

realx 6= 0, x 6= 1 andx 6= −1.

29. Find all continous functionsf : R → R which satisfy the equationf(x+y) =
f(x) + f(y) + xy for all x, y ∈ R.

30. Find all functionsf : R → R satsifyingxf(y) + yf(x) = (x + y)f(x)f(y)
for all x, y ∈ R.

31. Find all injective (one-to-one) functionsf : R → R such thatf
(
f(x) + y

)
=

f(x + y) + 1 for all x, y ∈ R.

32. Find all functionsf : Z → Z satisfying following conditionsf(1) = 1 and
f(x + y)

(
f(x)− f(y)

)
= f(x− y)

(
f(x) + f(y)

)
for all x, y ∈ Z.

33. Find all polynomialsp(x) satisfying the equationp(x2 − 2x) =
(
p(x − 2)

)2

for all x ∈ R.
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34. Find all continous functionsf : R → R such thatf(1) = 1 andf
√

x2 + y2 =
f(x) + f(y) for all x, y ∈ R.

35. Find all functions defined forx > 0, such thatxf(y) + yf(x) = f(xy) for all
x, y ∈ R+.

36. Find all continous solutionsf : R → R to the equationf(x+y)−f(x−y) =
f(x) for all x, y ∈ R.

37. Find all functionsf : R → R, continous inx = 0 which satisfy the equation
f(x + y) = f(x) + f(y) + xy(x + y) for all x, y ∈ R. (Compare with problem
25.)

38. Find all functionsf : R → R which solve the equationf(x+y)+f(x−y) =
2f(x) cos y for all x, y ∈ R.

39. Supposef : N → N is a strictly increasin function such thatf(f(n)) = 3n
for all n ∈ N. Find all possible values off(1977).

40. (AMM, Problem E2176) Find all functionsf : Q → Q such thatf(2) = 2

andf
(x + y

x− y

)
=

f(x) + f(y)

f(x)− f(y)
for all rationalx 6= y.

41. (Austria-Poland, 1997) Show that there is no functionf : Z → Z such that
f
(
x + f(y)

)
= f(x)− y for all x, y ∈ Z.

42. (Ukraine, 1997) Find all functionsf : Q+ → Q+ such thatf(x + 1) =

f(x) + 1 and f(x2) =
(
f(x)

)2
for all x ∈ Q+.

43. (IMO short-list, 1999) Suppose that the functionf : R → R satisfies two

conditions:|f(x)| ≤ 1 for all x ∈ R and f
(
x+

13

42

)
+f(x) = f

(
x+

1

6

)
+f

(
x+

1

7

)
for all x ∈ R. Prove thatf(x) is periodic.

44. (IMO, 1981) The functionf(x, y) satisfies:
f(0, y) = y + 1, f(x + 1, 0) = f(x, 1) andf(x + 1, y + 1) = f(x, f(x + 1, y))

for all non-negative integersx, y. Findf(4, 1981).

45. (IMO, 2004) Find all polynomialsP (x) with real coefficients which satisfy
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the equality
P (a− b) + P (b− c) + P (c− a) = 2P (a + b + c)

for all real numbersa, b, c such thatab + bc + ca = 0.

46. (IMO, 1994) LetS be the set of all real numbers greater than−1. Find all
functionsf : S → S such thatf

(
x + f(y) + xf(y)

)
= y + f(x) + yf(x) for all

x, y ∈ S, and
f(x)

x
is strictly increasing on each of the intervals−1 < x < 0 and

0 < x.

47. (IMO, 1992) Find all functionsf : R → R such thatf
(
x2 + f(y)

)
=

y +
(
f(x)

)2
for all x, y ∈ R.

48. (Iran, 1999) Supposef : R+ → R+ is a strictly decreasing function which
satisfy the equation

f(x+y)+f
(
f(x)+f(y)

)
= f

(
f
(
f(x)+y

)
+f

(
x+f(y)

))
for all x, y ∈ R+.

Prove thatf
(
f(x)

)
= x for all x ∈ R+.

49. (IMO, 1988) A functionf is defined on the positive integersN by:

f(1) = 1, f(3) = 3, f(2n) = f(n), f(4n + 1) = 2f(2n + 1)− f(n), and
f(4n + 3) = 3f(2n + 1)− 2f(n) for all n ∈ N.

Determine the number of positive integersn ≤ 1988 for whichf(n) = n.

50. (IMO, 1986) Find all functionsf(x) defined on the non-negative real numbers
and taking non-negative real values such that:f(2) = 0, f(x) 6= 0 for 0 ≤ x < 2,
andf

(
xf(y)

)
f(y) = f(x + y) for all non-negative realx, y.

51. (IMO, 1998) Consider all functionsf : N → N satisfyingf
(
t2f(s)

)
=

s
(
f(t)

)2
for all s, t ∈ N. Determine the least possible value off(1998).

52. (IMO, 1990) Construct a functionf : Q+ → Q+ such thatf
(
xf(y)

)
=

f(x)

y
for all x, y ∈ Q+.

Hints and answers.

27. Hint: Try some values.
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Answer:f(x) ≡ 0.

28. Hint: Create a new equation.

Answer:f(x) =
3− x

x(1− x2)
.

29. Hint: One way of solving is the standard procedure, findingf(n) for integers
n, extend it toQ and then toR.

Another way is to guess thatf(x) =
1

2
x2 is one solution. Are there more?

Answer:f(x) = 1
2x

2 + cx for any real constantc.

30. Hint: Try some values.

Answer:f(x) ≡ 0 or f(x) =

{
1 if x 6= 0
c if x = 0

for any real constantc.

31. Hint: Let x andy change places.

Answer:f(x) = x + 1.

32. Hint: Show thatf(n) is odd. Take thenx = 2 andy = 1 and consider some
cases.

Answer:f(n) =


0 if n = 2k
1 if n = 4k + 1
−1 if n = 4k + 3

, or f(n) =


0 if n = 3k
1 if n = 3k + 1
−1 if n = 3k + 2

,

for k ∈ Z, or f(n) = n for all n ∈ Z.

33. Hint: Solve first the functional equationq(x2) =
(
q(x)

)2
, whereq(x) is a

polynomial.

Answer:p(x) ≡ 0 or p(x) = (x + 1)n for eachn ∈ N.

34. Hint: Find the expression forf(x) first for x in N, then inQ.

Answer:f(x) = x2.

35. Hint: Transform to a Cauchy-type equation.

Answer:f(x) = cx ln x for any real constantc.
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36. Hint: Standard procedure.

Answer:f(x) = cx for any real constantc.

37. Hint: One way of solving is the standard procedure, findingf(n) for integers
n, extend it toQ and then toR. But first you will have to show that the continuty
in x = 0 will imply that f(x) is continous for allx ∈ R.

Another way is to discover that3xy(x+y) is a part of the expression for(x+y)3

and thus guess thatf(x) =
1

3
x3 is one solution. Are there more?

Answer:f(x) = 1
3x

3 + cx for any real constantc.

38. Hint: Start with some values forx andy.

Answer:f(x) = a cos x + b sin x for any choice ofa, b ∈ R.

39. Hint: Prove thatf(3k) = 3f(k). Show then that for3m ≤ n < 2 · 3m

the function isf(n) = n + 3m, while for 2 · 3m ≤ n < 3m+1 one must have
f(n) = 3n− 3m+1.

Answer:f(1997) = 3804.

40. Hint: Find f(0) andf(1). Show then thatf
(m

n

)
=

f(m)

f(n)
for all m,n ∈ Z,

n 6= 0.

Answer:f(x) = x.

41. Hint: Show thatg(x) = f
(
f(x)

)
is injective (in fact linear) and then show

thatf(x) satisfy the first of Cauchy’s equations. Find then the contradiction to the
existens of the solution.

42. Hint: Countf
((m

n
+ n

)2
)

in two different ways.

Answer:f(x) = x.

43. Hint: Show that the functiong(x) = f(x+
1

6
)−f(x) is periodic and then that

the functionh(x) = f(x + 1)− f(x) is periodic.

Answer: The sortest period forf(x) is 1.

44. Hint: Calculatef(1, n), f(2, n), f(3, n) and find the pattern.
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Answer:f(4, 1981) = 222...2

−3, a tower of 1984 2’s less 3. In general,f(4, n) =

222...2

− 3, a tower of(n + 3) 2’s less 3.

45. Hint: For avery real numbert the triple (a, b, c) = (6t, 3t,−2t) satisfy the
conditionab + bc + ca = 0. What implication does it have on the equation?

Answer:P (x) = αx4 + βx2 for any choice of real numbersα andβ.

46. Hint: Start by takingy = x. Find out thatx + f(x) + xf(x) is a fixed point of
f(x) for eachx ∈ S. How many fixed points canf(x) has at most?

Answer:f(x) =
−x

x + 1
.

47. Hint: Prove thatf(0) = 0. Show thatf(f(y)) = y for all real y. Show
thereafter thatf(x + y) = f(x) + f(y).

Answer:f(x) = x.

48. Hint: Start withy = x and then changex to f(x). Assume thatf
(
f(x)

)
> x

and don’t forget to use the fact thatf(x) is strictly decreasing.

49. Hint: Think of the numbers in base 2, i.e. letn2 be the binary representation
of n. Prove thereafter (using the induction) that the functionf(n2) returns the
numberm2 which has the same digits asn2 but in the opposite order. The problem
reduces then to finding the number of all integers≤ 1988 with the symmetric
binary representation. Find that the number of symmetrical binary numbers with
k digits is2b(n−1)/2c. How many (binary) digits do we need in order to not exceed
1988?

Answer:92.

50. Hint: Show thatf(x) = 0 for all x ≥ 2. How shouldf(x) look like for
0 ≤ x < 2?

Answer:f(x) =

{ 2
2−x if 0 ≤ x < 2

0 if x ≥ 2

51. Hint: If f(1) = k, show thatk dividesf(n) for all n. Show then that the

functiong(n) =
f(n)

k
also satisfies teh given equation. Since we are looking for
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the smalest value off(1998) we may assumef(1) = 1.
Show then that ifp is a prime number thatf(p) is a prime number as well and

f(f(p)) = p. Show finaly thatf(n) can be defined arbitrary on primes as long as
the conditionsf(p) = q (wherep andq are prime) andf(q) = p are satisfied.

Answer:2 · 2 · 2 · 3 · 5 = 120.

52. Hint: Show thatf(xy) = f(x)f(y) andf
(
f(x)

)
=

1

x
for all x, y ∈ Q+.

For x ∈ Q+ constructf(x) based on the prime faktorization of numerator and
denumerator:x = pn1

1 pn2
2 ...pnk

k , wherepi are prime numbers andni ∈ Z, since
we havef(x) =

(
f(p1)

)n1
(
f(p2)

)n2...
(
f(pk)

)nk (?). Thus it is enough to define
a suitable function on the set of all prime numbers{p1, p2, p3, ...} and, of course,
addf(1) = 1.

Answer: One possible construction isf(pj) =

{
pj+1 if j is odd,

1
pj+1

if j is even, f(1) = 1

and extend it to wholeQ+ using (?).
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